login
A002011
a(n) = 4*(2n+1)!/n!^2.
(Formerly M3598 N1458)
6
4, 24, 120, 560, 2520, 11088, 48048, 205920, 875160, 3695120, 15519504, 64899744, 270415600, 1123264800, 4653525600, 19234572480, 79342611480, 326704870800, 1343120024400, 5513861152800, 22606830726480, 92580354403680, 378737813469600
OFFSET
0,1
REFERENCES
R. C. Mullin, E. Nemeth and P. J. Schellenberg, The enumeration of almost cubic maps, pp. 281-295 in Proceedings of the Louisiana Conference on Combinatorics, Graph Theory and Computer Science. Vol. 1, edited R. C. Mullin et al., 1970.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Milan Janjić, Pascal Matrices and Restricted Words, J. Int. Seq., Vol. 21 (2018), Article 18.5.2.
FORMULA
G.f.: 4*(1-4x)^(-3/2).
a(n) = 1/J(n) where J(n) = Integral_{t=0..Pi/4} (cos(t)^2 - 1/2)^(2n+1). - Benoit Cloitre, Oct 17 2006
MAPLE
seq(2*n*binomial(2*n, n), n=1..23); # Zerinvary Lajos, Dec 14 2007
MATHEMATICA
Table[4*(2*n + 1)!/n!^2, {n, 0, 20}] (* T. D. Noe, Aug 30 2012 *)
PROG
(PARI) a(n)=if(n<0, 0, 4*(2*n+1)!/n!^2)
CROSSREFS
a(n)=4 A002457(n).
a(n) = 2 * A005430(n+1) = 4 * A002457(n).
Cf. A001803.
Sequence in context: A037132 A067312 A017976 * A270462 A273444 A049315
KEYWORD
nonn
EXTENSIONS
Simpler description from Travis Kowalski (tkowalski(AT)coloradocollege.edu), Mar 20 2003
STATUS
approved