login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A248168 G.f.: 1/sqrt((1-3*x)*(1-11*x)). 3
1, 7, 57, 511, 4849, 47607, 477609, 4862319, 50026977, 518839783, 5414767897, 56795795679, 598213529809, 6322787125207, 67026654455433, 712352213507151, 7587639773475777, 80977812878889927, 865716569022673401, 9269461606674304959, 99387936492243451569, 1066975862517563301303 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..961

Hacène Belbachir, Abdelghani Mehdaoui, László Szalay, Diagonal Sums in the Pascal Pyramid, II: Applications, J. Int. Seq., Vol. 22 (2019), Article 19.3.5.

FORMULA

a(n) equals the central coefficient in (1 + 7*x + 4*x^2)^n, n>=0.

a(n) = Sum_{k=0..n} 3^(n-k) * 2^k * C(n,k) * C(2*k,k).

a(n) = Sum_{k=0..n} 11^(n-k) * (-2)^k * C(n,k) * C(2*k,k). - Paul D. Hanna, Apr 20 2019

a(n)^2 = A248167(n), which gives the coefficients in 1 / AGM(1-3*11*x, sqrt((1-3^2*x)*(1-11^2*x))).

Equals the binomial transform of 2^n*A026375(n).

Equals the second binomial transform of A084771.

Equals the third binomial transform of A059304(n) = 2^n*(2*n)!/(n!)^2.

a(n) ~ 11^(n+1/2)/(2*sqrt(2*Pi*n)). - Vaclav Kotesovec, Oct 03 2014

D-finite: n*a(n) +7*(-2*n+1)*a(n-1) +33*(n-1)*a(n-2)=0. - R. J. Mathar, Jan 20 2020

EXAMPLE

G.f.: A(x) = 1 + 7*x + 57*x^2 + 511*x^3 + 4849*x^4 + 47607*x^5 +...

where A(x)^2 = 1/((1-3*x)*(1-11*x)):

A(x)^2 = 1 + 14*x + 163*x^2 + 1820*x^3 + 20101*x^4 + 221354*x^5 +...

MATHEMATICA

CoefficientList[Series[1/Sqrt[(1-3*x)*(1-11*x)], {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 03 2014 *)

PROG

(PARI) {a(n)=polcoeff( 1 / sqrt((1-3*x)*(1-11*x) +x*O(x^n)), n) }

for(n=0, 25, print1(a(n), ", "))

(PARI) {a(n)=polcoeff( (1 + 7*x + 4*x^2 +x*O(x^n))^n, n) }

for(n=0, 25, print1(a(n), ", "))

(PARI) {a(n)=sum(k=0, n, 3^(n-k)*2^k*binomial(n, k)*binomial(2*k, k))}

for(n=0, 25, print1(a(n), ", "))

CROSSREFS

Cf. A248167, A084771.

Sequence in context: A142990 A202250 A147689 * A176733 A062192 A122649

Adjacent sequences:  A248165 A248166 A248167 * A248169 A248170 A248171

KEYWORD

nonn,changed

AUTHOR

Paul D. Hanna, Oct 03 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 23 16:42 EST 2020. Contains 331172 sequences. (Running on oeis4.)