login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f.: 1/sqrt((1-3*x)*(1-11*x)).
3

%I #19 Aug 19 2022 04:16:54

%S 1,7,57,511,4849,47607,477609,4862319,50026977,518839783,5414767897,

%T 56795795679,598213529809,6322787125207,67026654455433,

%U 712352213507151,7587639773475777,80977812878889927,865716569022673401,9269461606674304959,99387936492243451569,1066975862517563301303

%N G.f.: 1/sqrt((1-3*x)*(1-11*x)).

%H Seiichi Manyama, <a href="/A248168/b248168.txt">Table of n, a(n) for n = 0..961</a>

%H Hacène Belbachir, Abdelghani Mehdaoui, László Szalay, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL22/Szalay/szalay42.html">Diagonal Sums in the Pascal Pyramid, II: Applications</a>, J. Int. Seq., Vol. 22 (2019), Article 19.3.5.

%F a(n) equals the central coefficient in (1 + 7*x + 4*x^2)^n, n>=0.

%F a(n) = Sum_{k=0..n} 3^(n-k) * 2^k * C(n,k) * C(2*k,k).

%F a(n) = Sum_{k=0..n} 11^(n-k) * (-2)^k * C(n,k) * C(2*k,k). - _Paul D. Hanna_, Apr 20 2019

%F a(n)^2 = A248167(n), which gives the coefficients in 1 / AGM(1-3*11*x, sqrt((1-3^2*x)*(1-11^2*x))).

%F Equals the binomial transform of 2^n*A026375(n).

%F Equals the second binomial transform of A084771.

%F Equals the third binomial transform of A059304(n) = 2^n*(2*n)!/(n!)^2.

%F a(n) ~ 11^(n+1/2)/(2*sqrt(2*Pi*n)). - _Vaclav Kotesovec_, Oct 03 2014

%F D-finite with recurrence: n*a(n) +7*(-2*n+1)*a(n-1) +33*(n-1)*a(n-2)=0. [Belbachir]

%e G.f.: A(x) = 1 + 7*x + 57*x^2 + 511*x^3 + 4849*x^4 + 47607*x^5 +...

%e where A(x)^2 = 1/((1-3*x)*(1-11*x)):

%e A(x)^2 = 1 + 14*x + 163*x^2 + 1820*x^3 + 20101*x^4 + 221354*x^5 +...

%t CoefficientList[Series[1/Sqrt[(1-3*x)*(1-11*x)], {x, 0, 20}], x] (* _Vaclav Kotesovec_, Oct 03 2014 *)

%o (PARI) {a(n)=polcoeff( 1 / sqrt((1-3*x)*(1-11*x) +x*O(x^n)), n) }

%o for(n=0, 25, print1(a(n), ", "))

%o (PARI) {a(n)=polcoeff( (1 + 7*x + 4*x^2 +x*O(x^n))^n, n) }

%o for(n=0, 25, print1(a(n), ", "))

%o (PARI) {a(n)=sum(k=0,n, 3^(n-k)*2^k*binomial(n,k)*binomial(2*k,k))}

%o for(n=0, 25, print1(a(n), ", "))

%Y Cf. A248167, A084771.

%K nonn

%O 0,2

%A _Paul D. Hanna_, Oct 03 2014