login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A147689
a(n) = ((7 + sqrt(8))^n + (7 - sqrt(8))^n)/2.
2
1, 7, 57, 511, 4817, 46487, 453321, 4440527, 43581217, 428075431, 4206226137, 41336073247, 406249753841, 3992717550647, 39241805801577, 385683861645551, 3790660025173057, 37256202024955207, 366169767317277561
OFFSET
0,2
FORMULA
From Philippe Deléham, Nov 13 2008: (Start)
a(n) = 14*a(n-1) - 41*a(n-2), a(0)=1, a(1)=7.
G.f.: (1-7x)/(1-14x+41x^2).
a(n) = (Sum_{k=0..n} A098158(n,k)*7^(2k)*8^(n-k))/7^n. (End)
MATHEMATICA
LinearRecurrence[{14, -41}, {1, 7}, 20] (* Harvey P. Dale, Sep 11 2020 *)
PROG
(Magma) Z<x>:= PolynomialRing(Integers()); N<r8>:=NumberField(x^2-8); S:=[ ((7+r8)^n+(7-r8)^n)/2: n in [0..18] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Nov 13 2008
CROSSREFS
Sequence in context: A082413 A142990 A202250 * A248168 A176733 A062192
KEYWORD
nonn
AUTHOR
Al Hakanson (hawkuu(AT)gmail.com), Nov 10 2008
EXTENSIONS
Extended beyond a(6) by Klaus Brockhaus, Nov 13 2008
STATUS
approved