login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A247883
Consecutive exclusionary cubes: Digits of n are not present in n^3 and digits of n+1 are not present in n+1.
0
2, 7, 47, 52, 187, 222, 477, 587, 5522, 6777
OFFSET
1,1
COMMENTS
If it exists, a(11) > 10^7.
PROG
(Python)
for n in range(10**6):
..s, t = str(n), str(n+1)
..s3, t3 = str(n**3), str((n+1)**3)
..c = 0
..for i in s:
....if s3.count(i):
......c += 1
......break
..for j in t:
....if t3.count(j):
......c += 1
......break
..if not c:
....print(n, end=', ')
(PARI)
for(n=1, 10^6, s=digits(n); t=digits(n+1); s3=digits(n^3); t3=digits((n+1)^3); if(#vecsort(concat(s, s3), , 8)==#vecsort(s, , 8)+#vecsort(s3, , 8)&&#vecsort(concat(t, t3), , 8)==#vecsort(t, , 8)+#vecsort(t3, , 8), print1(n, ", ")))
CROSSREFS
Cf. A029785.
Sequence in context: A351917 A349640 A111842 * A027458 A062632 A116892
KEYWORD
nonn,base
AUTHOR
Derek Orr, Sep 25 2014
STATUS
approved