OFFSET
1,1
COMMENTS
a(n)/10^n seems to converge to a number around .3143...
a(n)/10^n converges to 7129/22680. - Hiroaki Yamanouchi, Sep 26 2014
LINKS
Hiroaki Yamanouchi, Table of n, a(n) for n = 1..100
Beyond Solutions Blog, Multiple of the first digit
J. J. O'Connor and E. F. Robertson, Pietro Mengoli
PROG
(PARI)
a(n)=c=0; for(k=1, 10^n-1, d=digits(k); if(k%d[1]==0, c++)); c
n=1; while(n<10, print1(a(n), ", "); n++)
(Python)
count = 9#Start with the first 9 digits
print(1, 9)
n = 2
while n < 101:
....for a in range(1, 10):
........count += 10**(n-1)/a
........if 10**(n-1) % a != 0:
............count += 1
....print(n, count)
....n += 1
# David Consiglio, Jr., Sep 26 2014
CROSSREFS
KEYWORD
nonn,easy,base
AUTHOR
Derek Orr, Sep 25 2014
EXTENSIONS
a(9)-a(20) from Hiroaki Yamanouchi, Sep 26 2014
STATUS
approved