login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Consecutive exclusionary cubes: Digits of n are not present in n^3 and digits of n+1 are not present in n+1.
0

%I #5 Sep 25 2014 23:33:23

%S 2,7,47,52,187,222,477,587,5522,6777

%N Consecutive exclusionary cubes: Digits of n are not present in n^3 and digits of n+1 are not present in n+1.

%C If it exists, a(11) > 10^7.

%o (Python)

%o for n in range(10**6):

%o ..s,t = str(n),str(n+1)

%o ..s3,t3 = str(n**3),str((n+1)**3)

%o ..c = 0

%o ..for i in s:

%o ....if s3.count(i):

%o ......c += 1

%o ......break

%o ..for j in t:

%o ....if t3.count(j):

%o ......c += 1

%o ......break

%o ..if not c:

%o ....print(n,end=', ')

%o (PARI)

%o for(n=1,10^6,s=digits(n);t=digits(n+1);s3=digits(n^3);t3=digits((n+1)^3);if(#vecsort(concat(s,s3),,8)==#vecsort(s,,8)+#vecsort(s3,,8)&&#vecsort(concat(t,t3),,8)==#vecsort(t,,8)+#vecsort(t3,,8),print1(n,", ")))

%Y Cf. A029785.

%K nonn,base

%O 1,1

%A _Derek Orr_, Sep 25 2014