login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A247826
Numbers n with at least one nonpalindromic divisor such that the sum of sigma(x) = the sum of sigma(reverse(x)), where x runs over the divisors of n.
1
16331, 98639, 161051, 179641, 272802, 1206611, 1226221, 1649431, 1794971, 6061206, 6177253, 8792914
OFFSET
1,1
EXAMPLE
Divisors of 16331 are 1, 7, 2333, 16331;
sigma(1) = 1, sigma(7) = 8, sigma(2333) = 2334, sigma(16331) = 18672 and 1 + 8 + 2334 + 18672 = 21015.
sigma(1) = 1, sigma(7) = 8, sigma(3332) = 7182, sigma(13361) = 13824 and 1 + 8 + 7182 + 13824 = 21015.
Divisors of 98639 are 1, 98639;
sigma(1) = 1, sigma(98639) = 98640, and 1 + 98640 = 98641.
sigma(1) = 1, sigma(93689) = 98640, and 1 + 98640 = 98641.
MAPLE
with(numtheory); T:=proc(h) local x, y, w; x:=h; y:=0;
for w from 1 to ilog10(h)+1 do y:=10*y+(x mod 10); x:=trunc(x/10); od; y; end:
P:=proc(q) local a, b, c, k, n, ok;
for n from 1 to q do a:=divisors(n); b:=0; c:=0; ok:=0;
for k from 1 to nops(a) do b:=b+sigma(T(a[k])); c:=c+sigma(a[k]);
if a[k]<>T(a[k]) then ok:=1; fi; od;
if ok=1 and c=b then print(n); fi; od; end: P(10^9);
PROG
(PARI) rev(n) = subst(Polrev(digits(n)), x, 10);
isok(n) = {nbpal = sumdiv(n, d, rev(d)==d); if (nbpal == numdiv(n), return(0)); sumdiv(n, d, sigma(d)) == sumdiv(n, d, sigma(rev(d))); } \\ Michel Marcus, Oct 04 2014
(PARI) rev(n)=r=""; d=digits(n); for(i=1, #d, r=concat(Str(d[i]), r)); eval(r)
for(n=1, 10^6, D=divisors(n); c=0; for(k=1, #D, if(D[k]==rev(D[k]), c++)); if(c!=#D, if(sumdiv(n, i, sigma(i))==sumdiv(n, j, sigma(rev(j))), print1(n, ", ")))) \\ Derek Orr, Oct 26 2014
CROSSREFS
KEYWORD
nonn,more,base,hard
AUTHOR
Paolo P. Lava, Sep 30 2014
EXTENSIONS
a(6)-a(12) from Michel Marcus, Oct 04 2014
Definition edited by Derek Orr, Oct 26 2014
STATUS
approved