Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Oct 28 2014 05:10:33
%S 16331,98639,161051,179641,272802,1206611,1226221,1649431,1794971,
%T 6061206,6177253,8792914
%N Numbers n with at least one nonpalindromic divisor such that the sum of sigma(x) = the sum of sigma(reverse(x)), where x runs over the divisors of n.
%e Divisors of 16331 are 1, 7, 2333, 16331;
%e sigma(1) = 1, sigma(7) = 8, sigma(2333) = 2334, sigma(16331) = 18672 and 1 + 8 + 2334 + 18672 = 21015.
%e sigma(1) = 1, sigma(7) = 8, sigma(3332) = 7182, sigma(13361) = 13824 and 1 + 8 + 7182 + 13824 = 21015.
%e Divisors of 98639 are 1, 98639;
%e sigma(1) = 1, sigma(98639) = 98640, and 1 + 98640 = 98641.
%e sigma(1) = 1, sigma(93689) = 98640, and 1 + 98640 = 98641.
%p with(numtheory); T:=proc(h) local x,y,w; x:=h; y:=0;
%p for w from 1 to ilog10(h)+1 do y:=10*y+(x mod 10); x:=trunc(x/10); od; y; end:
%p P:=proc(q) local a,b,c,k,n,ok;
%p for n from 1 to q do a:=divisors(n); b:=0; c:=0; ok:=0;
%p for k from 1 to nops(a) do b:=b+sigma(T(a[k])); c:=c+sigma(a[k]);
%p if a[k]<>T(a[k]) then ok:=1; fi; od;
%p if ok=1 and c=b then print(n); fi; od; end: P(10^9);
%o (PARI) rev(n) = subst(Polrev(digits(n)), x, 10);
%o isok(n) = {nbpal = sumdiv(n, d, rev(d)==d); if (nbpal == numdiv(n), return(0)); sumdiv(n, d, sigma(d)) == sumdiv(n, d, sigma(rev(d)));} \\ _Michel Marcus_, Oct 04 2014
%o (PARI) rev(n)=r="";d=digits(n);for(i=1,#d,r=concat(Str(d[i]),r));eval(r)
%o for(n=1,10^6,D=divisors(n);c=0;for(k=1,#D,if(D[k]==rev(D[k]),c++));if(c!=#D,if(sumdiv(n,i,sigma(i))==sumdiv(n,j,sigma(rev(j))),print1(n,", ")))) \\ _Derek Orr_, Oct 26 2014
%Y Cf. A000203, A196677, A246545.
%K nonn,more,base,hard
%O 1,1
%A _Paolo P. Lava_, Sep 30 2014
%E a(6)-a(12) from _Michel Marcus_, Oct 04 2014
%E Definition edited by _Derek Orr_, Oct 26 2014