login
A126824
Ramanujan numbers (A000594) read mod 16384.
1
1, 16360, 252, 14912, 4830, 10336, 16024, 2560, 1045, 15152, 10324, 5888, 12086, 8640, 4744, 4096, 8114, 7688, 11820, 896, 7584, 14368, 14664, 6144, 10663, 4848, 6552, 5632, 5222, 832, 11616, 0, 12976, 1872, 14288, 1856, 9534, 11232, 14632, 11264, 2938, 14592
OFFSET
1,2
REFERENCES
Oddmund Kolberg, Congruences for Ramanujan's Function ̈tau(n), Univ. Bergen Årbok Naturvit Rekke, No. 11, 1962.
LINKS
H. P. F. Swinnerton-Dyer, On l-adic representations and congruences for coefficients of modular forms, pp. 1-55 of Modular Functions of One Variable III (Antwerp 1972), Lect. Notes Math., 350, 1973.
FORMULA
a(n) == 705 * sigma_11(n) (mod 16384) for n == 7 (mod 8) (Kolberg, 1962). - Amiram Eldar, Jan 05 2025
MATHEMATICA
a[n_] := Mod[RamanujanTau[n], 16384]; Array[a, 100] (* Amiram Eldar, Jan 05 2025 *)
PROG
(PARI) a(n) = ramanujantau(n) % 16384; \\ Amiram Eldar, Jan 05 2025
CROSSREFS
Sequence in context: A013690 A247826 A223109 * A236778 A344102 A307493
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Feb 25 2007
STATUS
approved