login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A247698
Brady numbers: B(n) = B(n - 1) + B(n - 2) with B(1) = 2308 and B(2) = 4261.
3
2308, 4261, 6569, 10830, 17399, 28229, 45628, 73857, 119485, 193342, 312827, 506169, 818996, 1325165, 2144161, 3469326, 5613487, 9082813, 14696300, 23779113, 38475413, 62254526, 100729939, 162984465, 263714404, 426698869, 690413273, 1117112142, 1807525415, 2924637557, 4732162972, 7656800529
OFFSET
1,1
COMMENTS
B(n) / B(n - 1) approaches the golden ratio as n approaches infinity.
LINKS
Logan Cooper, Table of n, a(n) for n = 1..1000 (truncated from 9966 to 1000 terms by M. F. Hasler, May 10 2017)
Brady Haran and Matt Parker, Brady Numbers, Numberphile video (2014).
FORMULA
a(n) = a(n-1) + a(n-2).
G.f.: x*(2308 + 1953*x) / (1-x-x^2). - Colin Barker, Sep 23 2014
a(n) = k*phi^n + o(1), where k = 976.5 + sqrt(354578.45) = 1571.96.... - Charles R Greathouse IV, Sep 28 2014
a(n) = 2308*A000045(n-2) + 4261*A000045(n-1) = 1953*A000045(n+1) + 355*A000045(n). - M. F. Hasler, May 10 2017
a(n) = F(n+17) - F(n+8) - 9*F(n) - F(n-14) for F(n) = A000045(n). - Greg Dresden, Jul 07 2022
MAPLE
Brady1 := proc(n::posint)
option remember, system;
if n = 1 then
2308
elif n = 2 then
4261
else
thisproc( n - 1 ) + thisproc( n - 2 )
end if
end proc:
seq( Brady1( n ), n = 1 .. 100 );
# James McCarron, Oct 05 2019
# alternate program
Brady2 := ( n :: posint ) -> coeff( series(x*(2308+1953*x)/(1-x-x^2), x, n+1), x^n ):
seq( Brady2( n ), n = 1 .. 100 );
# James McCarron, Oct 05 2019
MATHEMATICA
LinearRecurrence[{1, 1}, {2308, 4261}, n]
Rest[CoefficientList[Series[x*(2308+1953*x)/(1-x-x^2), {x, 0, 50}], x]] (* G. C. Greubel, Sep 07 2018 *)
PROG
(Haskell) brady = let makeSeq a b = a : makeSeq b (a + b) in makeSeq 2308 4261
(PARI) Vec(-x*(1953*x+2308)/(x^2+x-1) + O(x^50)) \\ Colin Barker, Sep 23 2014
(PARI) a(n)=([1, 1; 1, 0]^n*[1953; 355])[1, 1] \\ Charles R Greathouse IV, Jan 20 2016
(Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(x*(2308+1953*x)/(1-x-x^2))); // G. C. Greubel, Sep 07 2018
(Python)
def A247698_list(n):
list = [2308, 4261] + [0] * (n - 2)
for i in range(2, n):
list[i] = list[i - 1] + list[i - 2]
return list
print(A247698_list(32)) # M. Eren Kesim, Jun 28 2021
CROSSREFS
Sequence in context: A031774 A031546 A250874 * A247839 A280659 A060231
KEYWORD
nonn,easy
AUTHOR
Sebastian Zimmer, Sep 22 2014
STATUS
approved