login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A247698 Brady numbers: B(n) = B(n - 1) + B(n - 2) with B(1) = 2308 and  B(2) = 4261. 3
2308, 4261, 6569, 10830, 17399, 28229, 45628, 73857, 119485, 193342, 312827, 506169, 818996, 1325165, 2144161, 3469326, 5613487, 9082813, 14696300, 23779113, 38475413, 62254526, 100729939, 162984465, 263714404, 426698869, 690413273, 1117112142, 1807525415, 2924637557, 4732162972, 7656800529 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

B(n) / B(n - 1) approaches the golden ratio as n approaches infinity.

LINKS

Logan Cooper, Table of n, a(n) for n = 1..1000 (truncated from 9966 to 1000 terms by M. F. Hasler, May 10 2017)

Brady Haran and Matt Parker, Brady Numbers, Numberphile video (2014)

Index entries for linear recurrences with constant coefficients, signature (1,1).

FORMULA

a(n) = a(n-1) + a(n-2).

G.f.: x*(2308 + 1953*x) / (1-x-x^2). - Colin Barker, Sep 23 2014

a(n) = k*phi^n + o(1), where k = 976.5 + sqrt(354578.45) = 1571.96.... - Charles R Greathouse IV, Sep 28 2014

a(n) = 2308*A000045(n-2) + 4261*A000045(n-1) = 1953*A000045(n+1) + 355*A000045(n). - M. F. Hasler, May 10 2017

MAPLE

Brady1 := proc(n::posint)

option remember, system;

if n = 1 then

  2308

elif n = 2 then

  4261

else

  thisproc( n - 1 ) + thisproc( n - 2 )

end if

end proc:

seq( Brady1( n ), n = 1 .. 100 );

# James McCarron, Oct 05 2019

# alternate program

Brady2 := ( n :: posint ) -> coeff( series(x*(2308+1953*x)/(1-x-x^2), x, n+1), x^n ):

seq( Brady2( n ), n = 1 .. 100 );

# James McCarron, Oct 05 2019

MATHEMATICA

LinearRecurrence[{1, 1}, {2308, 4261}, n]

Rest[CoefficientList[Series[x*(2308+1953*x)/(1-x-x^2), {x, 0, 50}], x]] (* G. C. Greubel, Sep 07 2018 *)

PROG

(Haskell) brady = let makeSeq a b = a : makeSeq b (a + b) in makeSeq 2308 4261

(PARI) Vec(-x*(1953*x+2308)/(x^2+x-1) + O(x^50)) \\ Colin Barker, Sep 23 2014

(PARI) a(n)=([1, 1; 1, 0]^n*[1953; 355])[1, 1] \\ Charles R Greathouse IV, Jan 20 2016

(MAGMA) m:=50; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(x*(2308+1953*x)/(1-x-x^2))); // G. C. Greubel, Sep 07 2018

CROSSREFS

Sequence in context: A031774 A031546 A250874 * A247839 A280659 A060231

Adjacent sequences:  A247695 A247696 A247697 * A247699 A247700 A247701

KEYWORD

nonn,easy

AUTHOR

Sebastian Zimmer, Sep 22 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 20:54 EST 2019. Contains 329779 sequences. (Running on oeis4.)