The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A247325 Number of paths from (0,0) to (n,2), with vertices (i,k) satisfying 0 <= k <= 3, consisting of segments given by the vectors (1,1), (1,2), (1,-1). 6
 0, 1, 1, 4, 5, 13, 22, 45, 87, 166, 329, 627, 1232, 2373, 4621, 8956, 17377, 33737, 65422, 127009, 246363, 478134, 927685, 1800119, 3492960, 6777593, 13151433, 25518580, 49516525, 96081013, 186435302, 361757509, 701951407, 1362062118, 2642933937, 5128331659 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Also, a(n) = number of strings s(0)..s(n) of integers such that s(0) = 0, s(n) = 2, and for i > 0, s(i) is in {0,1,2,3} and s(i) - s(i-1) is in {-1,1,2} for 1 <= i <= n; also, a(n) = row 2 of the array at A247321. LINKS Clark Kimberling, Table of n, a(n) for n = 0..1000 FORMULA Empirically, a(n) = 3*a(n-2) + 2*a(n-3) - a(n-4) and g.f. = (x + x^2 + x^3)/(1 - 3 x^2 - 2 x^3 + x^4). EXAMPLE a(4) counts these 4 paths, each represented by a vector sum applied to (0,0): (1,2) + (1,1) + (1,-1); (1,1) + (1,2) + (1,-1); (1,2) + (1,-1) + (1,1); (1,1) + (1,-1) + (1,2). MATHEMATICA z = 25; t[0, 0] = 1; t[0, 1] = 0; t[0, 2] = 0; t[0, 3] = 0; t[1, 3] = 0; t[n_, 0] := t[n, 0] = t[n - 1, 1]; t[n_, 1] := t[n, 1] = t[n - 1, 0] + t[n - 1, 2]; t[n_, 2] := t[n, 2] = t[n - 1, 0] + t[n - 1, 1] + t[n - 1, 3]; t[n_, 3] := t[n, 3] = t[n - 1, 1] + t[n - 1, 2]; Table[t[n, 2], {n, 0, z}]; (* A247325 *) CROSSREFS Cf. A247049, A247321, A247322, A247326. Sequence in context: A094029 A005672 A147001 * A140683 A304599 A071341 Adjacent sequences: A247322 A247323 A247324 * A247326 A247327 A247328 KEYWORD nonn,easy AUTHOR Clark Kimberling, Sep 13 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 4 08:56 EDT 2023. Contains 363121 sequences. (Running on oeis4.)