login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A246915 Numbers n such that sigma(n + sigma(n)) = sigma((n+1) + sigma(n+1)). 1
4, 7, 16, 50, 494, 4485, 12585, 20606, 45590, 46761, 48614, 64785, 72609, 137853, 169898, 196934, 224186, 321986, 363037, 466545, 474573, 532441, 702374, 811004, 910125, 982310, 1141281, 1282436, 1288557, 1531245, 1602801, 1635854, 1695705, 1842405, 2246781, 2725802, 3018277, 3343515 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
Numbers n such that A246456(n) = A246456(n+1).
Conjecture: sequence of numbers A246456(a(n)): 12, 24, 48, 168, 2160, 17280, 54720, 77280, 221184, 202176, 185328, 249984, 312480, 599040, 725760, 967680, 864864, 1327104, 1489488, 2048256, 1958400, 2439360, 3110400, 3902976, 4852224, 4713984, … is sequence of any multiples of 12.
LINKS
EXAMPLE
Number 16 is in sequence because A246456(4) = A246456(5) = 12.
MATHEMATICA
SequencePosition[Table[DivisorSigma[1, n+DivisorSigma[1, n]], {n, 3344000}], {x_, x_}][[All, 1]] (* The program takes a long time to run. To generate fewer terms but more quickly, reduce the "n" constant. *) (* Harvey P. Dale, Mar 07 2022 *)
PROG
(Magma) [n:n in[1..1000000] | SumOfDivisors(n+SumOfDivisors(n)) eq SumOfDivisors(n+1+SumOfDivisors(n+1))]
(PARI)
for(n=1, 10^7, if(sigma(n+sigma(n))==sigma(n+1+sigma(n+1)), print1(n, ", "))) \\ Derek Orr, Sep 07 2014
CROSSREFS
Sequence in context: A289521 A097661 A182561 * A340600 A013625 A182929
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Sep 07 2014
EXTENSIONS
More terms from Derek Orr, Sep 07 2014
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 20 18:51 EDT 2024. Contains 373532 sequences. (Running on oeis4.)