OFFSET
1,1
COMMENTS
Primes p such that sigma(p+sigma(p)) = 3*sigma(p). Subsequence of A246910.
The next term, if it exists, must be greater than 10^9.
Conjecture: Also primes p such that sigma(2p+1) mod p = 3. - Jaroslav Krizek, Sep 28 2014
No other terms up to 10^11. - Michel Marcus, Feb 21 2020
EXAMPLE
Prime 7 is in sequence because sigma(2*7 + 1) = sigma(15) = 24 = 3*(7+1).
MAPLE
with(numtheory): A246914:=n->`if`(isprime(n) and sigma(2*n+1) = 3*(n+1), n, NULL): seq(A246914(n), n=1..10^5); # Wesley Ivan Hurt, Oct 01 2014
MATHEMATICA
Select[Prime[Range[1500]], DivisorSigma[1, 2# + 1] == 3# + 3 &] (* Alonso del Arte, Sep 07 2014 *)
PROG
(Magma) [n:n in[1..10^7] | SumOfDivisors(n+SumOfDivisors(n))eq 3*SumOfDivisors(n) and IsPrime(n)]
(PARI)
for(n=1, 10^6, p=prime(n); if(sigma(p+sigma(p))==3*sigma(p), print1(p, ", "))) \\ Derek Orr, Sep 07 2014
(PARI) forprime(p=2, 10^7, if(sigma(2*p+1)==3*(p+1), print1(p, ", "))) \\ Edward Jiang, Sep 07 2014
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Jaroslav Krizek, Sep 07 2014
STATUS
approved