The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A246914 Primes p such that sigma(2p+1) = 3*(p+1). 6
7, 103, 1487, 9679, 73727, 603679 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
Primes p such that sigma(p+sigma(p)) = 3*sigma(p). Subsequence of A246910.
The next term, if it exists, must be greater than 10^9.
Conjecture: Also primes p such that sigma(2p+1) mod p = 3. - Jaroslav Krizek, Sep 28 2014
No other terms up to 10^11. - Michel Marcus, Feb 21 2020
LINKS
EXAMPLE
Prime 7 is in sequence because sigma(2*7 + 1) = sigma(15) = 24 = 3*(7+1).
MAPLE
with(numtheory): A246914:=n->`if`(isprime(n) and sigma(2*n+1) = 3*(n+1), n, NULL): seq(A246914(n), n=1..10^5); # Wesley Ivan Hurt, Oct 01 2014
MATHEMATICA
Select[Prime[Range[1500]], DivisorSigma[1, 2# + 1] == 3# + 3 &] (* Alonso del Arte, Sep 07 2014 *)
PROG
(Magma) [n:n in[1..10^7] | SumOfDivisors(n+SumOfDivisors(n))eq 3*SumOfDivisors(n) and IsPrime(n)]
(PARI)
for(n=1, 10^6, p=prime(n); if(sigma(p+sigma(p))==3*sigma(p), print1(p, ", "))) \\ Derek Orr, Sep 07 2014
(PARI) forprime(p=2, 10^7, if(sigma(2*p+1)==3*(p+1), print1(p, ", "))) \\ Edward Jiang, Sep 07 2014
CROSSREFS
Sequence in context: A142400 A032460 A267234 * A274670 A188946 A368440
KEYWORD
nonn,more
AUTHOR
Jaroslav Krizek, Sep 07 2014
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 12 15:38 EDT 2024. Contains 373331 sequences. (Running on oeis4.)