login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A246702
The number of positive k < (2n-1)^2 such that (2^k - 1)/(2n - 1)^2 is an integer.
6
0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 10, 2, 1, 1, 1, 6, 3, 2, 1, 9, 2, 3, 3, 2, 2, 6, 1, 13, 9, 1, 1, 10, 5, 1, 3, 2, 8, 3, 2, 2, 1, 1, 10, 3, 8, 7, 9, 2, 2, 3, 1, 2, 26, 1, 3, 9, 4, 2, 9, 4, 1, 6, 1, 18, 9, 1, 7, 3, 2, 1, 3, 2, 5, 10, 1, 10, 6, 38, 3, 3, 4, 1, 41, 2
OFFSET
1,4
COMMENTS
a(n) is the number of integers k in range 1 .. A016754(n-1)-1 such that A000225(k) is an integral multiple of A016754(n-1). - Antti Karttunen, Nov 15 2014
Conjecture: the positions of 1's, a(k)=1, are exactly given by the 2k-1 which are elements of A167791. - Antti Karttunen, Nov 15 2014
From Charlie Neder, Oct 18 2018: (Start)
It would appear that, if 2k-1 is in A167791, then so is (2k-1)^2, and so a(k) = 1 would follow by definition.
Conjecture: Let B be the first value such that (2k-1)^2 divides 2^B - 1. Then either 2k-1 divides B, or 2k-1 is a Wieferich prime (A001220). (End)
LINKS
Kevin P. Thompson, Table of n, a(n) for n = 1..1560 (terms 1..128 from Antti Karttunen)
FORMULA
a(n) = floor( 4*n*(n-1) / A002326(2*n*(n-1)) ). - Max Alekseyev, Oct 11 2023
EXAMPLE
a(2) = 1 because (2^6 - 1)/(2*2 - 1)^2 = 7 is integer and 6 < 9.
a(3) = 1 because (2^20 - 1)/(2*3 - 1)^2 = 41943 is integer and 20 < 25.
a(3) = 2 because (2^21 - 1)/(2*4 - 1)^2 = 42799 is integer and 21 < 49; and also (2^42 - 1)/(2*4 - 1)^2 = 89756051247 is integer and 42 < 49.
MAPLE
A246702 := proc(n)
local a, klim, k ;
a := 0 ;
klim := (2*n-1)^2 ;
for k from 1 to klim-1 do
if modp(2^k-1, klim) = 0 then
a := a+1 ;
end if;
end do:
a ;
end proc:
seq(A246702(n), n=1..80) ; # R. J. Mathar, Nov 15 2014
MATHEMATICA
A246702[n_] := Module[{a, klim, k}, a = 0; klim = (2*n-1)^2; For[k = 1, k <= klim-1, k++, If[Mod[2^k-1, klim] == 0, a = a+1]]; a];
Table[A246702[n], {n, 1, 84}] (* Jean-François Alcover, Oct 04 2017, translated from R. J. Mathar's Maple code *)
PROG
(Scheme) (define (A246702 n) (let ((u (A016754 (- n 1)))) (let loop ((k (- u 1)) (s 0)) (cond ((zero? k) s) ((zero? (modulo (A000225 k) u)) (loop (- k 1) (+ s 1))) (else (loop (- k 1) s)))))) ;; Antti Karttunen, Nov 15 2014
(PARI) a(n)=my(t=(2*n-1)^2, m=Mod(1, t)); sum(k=1, t-1, m*=2; m==1) \\ Charles R Greathouse IV, Nov 16 2014
(PARI) a246702(n) = my(m=(2*n-1)^2); (m-1)\znorder(Mod(2, m)); \\ Max Alekseyev, Oct 11 2023
CROSSREFS
A246703 gives the positions of records.
Sequence in context: A262747 A016442 A076360 * A089398 A345272 A373381
KEYWORD
nonn
AUTHOR
EXTENSIONS
Corrected by R. J. Mathar, Nov 15 2014
STATUS
approved