OFFSET
1,4
COMMENTS
a(n) is the number of integers k in range 1 .. A016754(n-1)-1 such that A000225(k) is an integral multiple of A016754(n-1). - Antti Karttunen, Nov 15 2014
Conjecture: the positions of 1's, a(k)=1, are exactly given by the 2k-1 which are elements of A167791. - Antti Karttunen, Nov 15 2014
From Charlie Neder, Oct 18 2018: (Start)
It would appear that, if 2k-1 is in A167791, then so is (2k-1)^2, and so a(k) = 1 would follow by definition.
Conjecture: Let B be the first value such that (2k-1)^2 divides 2^B - 1. Then either 2k-1 divides B, or 2k-1 is a Wieferich prime (A001220). (End)
LINKS
Kevin P. Thompson, Table of n, a(n) for n = 1..1560 (terms 1..128 from Antti Karttunen)
FORMULA
a(n) = floor( 4*n*(n-1) / A002326(2*n*(n-1)) ). - Max Alekseyev, Oct 11 2023
EXAMPLE
a(2) = 1 because (2^6 - 1)/(2*2 - 1)^2 = 7 is integer and 6 < 9.
a(3) = 1 because (2^20 - 1)/(2*3 - 1)^2 = 41943 is integer and 20 < 25.
a(3) = 2 because (2^21 - 1)/(2*4 - 1)^2 = 42799 is integer and 21 < 49; and also (2^42 - 1)/(2*4 - 1)^2 = 89756051247 is integer and 42 < 49.
MAPLE
A246702 := proc(n)
local a, klim, k ;
a := 0 ;
klim := (2*n-1)^2 ;
for k from 1 to klim-1 do
if modp(2^k-1, klim) = 0 then
a := a+1 ;
end if;
end do:
a ;
end proc:
seq(A246702(n), n=1..80) ; # R. J. Mathar, Nov 15 2014
MATHEMATICA
A246702[n_] := Module[{a, klim, k}, a = 0; klim = (2*n-1)^2; For[k = 1, k <= klim-1, k++, If[Mod[2^k-1, klim] == 0, a = a+1]]; a];
Table[A246702[n], {n, 1, 84}] (* Jean-François Alcover, Oct 04 2017, translated from R. J. Mathar's Maple code *)
PROG
(Scheme) (define (A246702 n) (let ((u (A016754 (- n 1)))) (let loop ((k (- u 1)) (s 0)) (cond ((zero? k) s) ((zero? (modulo (A000225 k) u)) (loop (- k 1) (+ s 1))) (else (loop (- k 1) s)))))) ;; Antti Karttunen, Nov 15 2014
(PARI) a(n)=my(t=(2*n-1)^2, m=Mod(1, t)); sum(k=1, t-1, m*=2; m==1) \\ Charles R Greathouse IV, Nov 16 2014
(PARI) a246702(n) = my(m=(2*n-1)^2); (m-1)\znorder(Mod(2, m)); \\ Max Alekseyev, Oct 11 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Juri-Stepan Gerasimov, Nov 15 2014
EXTENSIONS
Corrected by R. J. Mathar, Nov 15 2014
STATUS
approved