login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A246579
G.f.: x^(k^2)/(mul(1-x^(2*i),i=1..k)*mul(1+x^(2*r-1),r=1..oo)) with k=3.
0
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 2, -3, 5, -7, 11, -15, 21, -29, 39, -52, 69, -90, 116, -150, 190, -241, 303, -379, 470, -583, 716, -878, 1071, -1302, 1575, -1902, 2285, -2739, 3273, -3899, 4631, -5489, 6486, -7647, 8996, -10557, 12363, -14450, 16853, -19618, 22798, -26441
OFFSET
0,12
REFERENCES
Fulman, Jason. Random matrix theory over finite fields. Bull. Amer. Math. Soc. (N.S.) 39 (2002), no. 1, 51--85. MR1864086 (2002i:60012). See top of page 70, Eq. 2, with k=3.
MAPLE
fU:=proc(k) local a, i, r;
a:=x^(k^2)/mul(1-x^(2*i), i=1..k);
a:=a/mul(1+x^(2*r-1), r=1..101);
series(a, x, 101);
seriestolist(%);
end;
fU(3);
CROSSREFS
k=0,1,2 give (apart perhaps from signs) A081360, A038348, A096778. Cf. A246590.
Sequence in context: A332745 A042953 A023028 * A232480 A332638 A035977
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Aug 31 2014
STATUS
approved