login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f.: x^(k^2)/(mul(1-x^(2*i),i=1..k)*mul(1+x^(2*r-1),r=1..oo)) with k=3.
0

%I #5 Aug 31 2014 20:34:58

%S 0,0,0,0,0,0,0,0,0,1,-1,2,-3,5,-7,11,-15,21,-29,39,-52,69,-90,116,

%T -150,190,-241,303,-379,470,-583,716,-878,1071,-1302,1575,-1902,2285,

%U -2739,3273,-3899,4631,-5489,6486,-7647,8996,-10557,12363,-14450,16853,-19618,22798,-26441

%N G.f.: x^(k^2)/(mul(1-x^(2*i),i=1..k)*mul(1+x^(2*r-1),r=1..oo)) with k=3.

%D Fulman, Jason. Random matrix theory over finite fields. Bull. Amer. Math. Soc. (N.S.) 39 (2002), no. 1, 51--85. MR1864086 (2002i:60012). See top of page 70, Eq. 2, with k=3.

%p fU:=proc(k) local a,i,r;

%p a:=x^(k^2)/mul(1-x^(2*i),i=1..k);

%p a:=a/mul(1+x^(2*r-1),r=1..101);

%p series(a,x,101);

%p seriestolist(%);

%p end;

%p fU(3);

%Y k=0,1,2 give (apart perhaps from signs) A081360, A038348, A096778. Cf. A246590.

%K sign

%O 0,12

%A _N. J. A. Sloane_, Aug 31 2014