login
A246243
Sum of eighth powers of coefficients in full expansion of (z_1+z_2+...+z_n)^n.
2
1, 1, 258, 1718985, 115245958660, 46377854607812505, 80785609177262537107236, 486005483266096999009285275991, 8558639841332633529404511878004186120, 388791577542234912413815089860741309780872785, 41231194444310047390596429351583294775856761836687780
OFFSET
0,3
LINKS
FORMULA
a(n) = [x^n] (n!)^8 * (Sum_{j=0..n} x^j/(j!)^8)^n.
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(b(n-j, i-1)*binomial(n, j)^7/j!, j=0..n)))
end:
a:= n-> n!*b(n$2):
seq(a(n), n=0..15);
CROSSREFS
Column k=8 of A245397.
Sequence in context: A097734 A121915 A239655 * A066129 A101521 A207060
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 19 2014
STATUS
approved