login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sum of eighth powers of coefficients in full expansion of (z_1+z_2+...+z_n)^n.
2

%I #4 Aug 19 2014 20:25:16

%S 1,1,258,1718985,115245958660,46377854607812505,

%T 80785609177262537107236,486005483266096999009285275991,

%U 8558639841332633529404511878004186120,388791577542234912413815089860741309780872785,41231194444310047390596429351583294775856761836687780

%N Sum of eighth powers of coefficients in full expansion of (z_1+z_2+...+z_n)^n.

%H Alois P. Heinz, <a href="/A246243/b246243.txt">Table of n, a(n) for n = 0..80</a>

%F a(n) = [x^n] (n!)^8 * (Sum_{j=0..n} x^j/(j!)^8)^n.

%p b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,

%p add(b(n-j, i-1)*binomial(n, j)^7/j!, j=0..n)))

%p end:

%p a:= n-> n!*b(n$2):

%p seq(a(n), n=0..15);

%Y Column k=8 of A245397.

%K nonn

%O 0,3

%A _Alois P. Heinz_, Aug 19 2014