login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A246246 Number of permutations of [n] with exactly one occurrence of the consecutive step pattern up, down, down. 2
3, 30, 270, 2322, 20772, 195372, 1958337, 20933154, 238789782, 2900868876, 37451986200, 512534035080, 7416327050415, 113185393797510, 1817654015037150, 30647027466113094, 541407973316966604, 10001886705503187732, 192877025408450517501, 3876090406516703418282 (list; graph; refs; listen; history; text; internal format)
OFFSET
4,1
LINKS
Alois P. Heinz and Vaclav Kotesovec, Table of n, a(n) for n = 4..300 (first 160 terms from Alois P. Heinz)
FORMULA
a(n) ~ c * (3*sqrt(3)/(2*Pi))^n * n! * n, where c = 0.6335500498606750386938465... = c0 * (c0-1)/3, and c0 = (1+exp(Pi/sqrt(3))) * sqrt(3) / (2*Pi). - Vaclav Kotesovec, Aug 22 2014
MAPLE
b:= proc(u, o, t) option remember; `if`(u+o=0, 1, expand(
add(b(u-j, o+j-1, [1, 3, 1][t])*`if`(t=3, x, 1), j=1..u)+
add(b(u+j-1, o-j, 2), j=1..o)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0, 1)):
seq([T(n)][2], n=4..20); # Vaclav Kotesovec, Aug 22 2014 after Alois P. Heinz
MATHEMATICA
b[u_, o_, t_] := b[u, o, t] = If[u + o == 0, 1, Expand[Sum[b[u - j, o + j - 1, {1, 3, 1}[[t]]]*If[t == 3, x, 1], {j, 1, u}] + Sum[b[u + j - 1, o - j, 2], {j, 1, o}]]];
a[n_] := Coefficient[b[n, 0, 1], x, 1];
a /@ Range[4, 20] (* Jean-François Alcover, Dec 28 2020, after Maple *)
CROSSREFS
Column k=1 of A242819.
Sequence in context: A120689 A359614 A180426 * A136896 A121085 A144282
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 20 2014
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 2 21:21 EST 2023. Contains 367526 sequences. (Running on oeis4.)