login
A246240
Sum of fifth powers of coefficients in full expansion of (z_1+z_2+...+z_n)^n.
2
1, 1, 34, 9237, 11007556, 41262262505, 393602334214536, 8250608306349317503, 341379009411431516029576, 25693424488177173143564108049, 3298778490446719483156753593432700, 686045693667123232536420797701863401231, 221475400673152122602874526565943771742514376
OFFSET
0,3
LINKS
FORMULA
a(n) = [x^n] (n!)^5 * (Sum_{j=0..n} x^j/(j!)^5)^n.
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(b(n-j, i-1)*binomial(n, j)^4/j!, j=0..n)))
end:
a:= n-> n!*b(n$2):
seq(a(n), n=0..15);
CROSSREFS
Column k=5 of A245397.
Sequence in context: A267916 A005334 A033511 * A273352 A189448 A214368
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 19 2014
STATUS
approved