login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A246220
Number of endofunctions on [n] where the largest cycle length equals 10.
2
362880, 43908480, 3448811520, 228012744960, 13954338478080, 827512686000000, 48753634065776640, 2895879112057451520, 174984885490926551040, 10817178515493080290560, 686533182382689959116800, 44833266187415969387604480, 3016487768851293040555130880
OFFSET
10,1
COMMENTS
In general, number of endofunctions on [n] where the largest cycle length equals k is asymptotic to (k*exp(H(k)) - (k-1)*exp(H(k-1))) * n^(n-1), where H(k) is the harmonic number A001008/A002805, k>=1. - Vaclav Kotesovec, Aug 21 2014
LINKS
FORMULA
a(n) ~ (10*exp(7381/2520) - 9*exp(7129/2520)) * n^(n-1). - Vaclav Kotesovec, Aug 21 2014
MAPLE
with(combinat):
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add((i-1)!^j*multinomial(n, n-i*j, i$j)/j!*
b(n-i*j, i-1), j=0..n/i)))
end:
A:= (n, k)-> add(binomial(n-1, j-1)*n^(n-j)*b(j, min(j, k)), j=0..n):
a:= n-> A(n, 10) -A(n, 9):
seq(a(n), n=10..25);
CROSSREFS
Column k=10 of A241981.
Sequence in context: A179064 A246197 A246617 * A160319 A227671 A172536
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 19 2014
STATUS
approved