login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of endofunctions on [n] where the largest cycle length equals 10.
2

%I #9 Aug 21 2014 05:48:05

%S 362880,43908480,3448811520,228012744960,13954338478080,

%T 827512686000000,48753634065776640,2895879112057451520,

%U 174984885490926551040,10817178515493080290560,686533182382689959116800,44833266187415969387604480,3016487768851293040555130880

%N Number of endofunctions on [n] where the largest cycle length equals 10.

%C In general, number of endofunctions on [n] where the largest cycle length equals k is asymptotic to (k*exp(H(k)) - (k-1)*exp(H(k-1))) * n^(n-1), where H(k) is the harmonic number A001008/A002805, k>=1. - _Vaclav Kotesovec_, Aug 21 2014

%H Alois P. Heinz, <a href="/A246220/b246220.txt">Table of n, a(n) for n = 10..200</a>

%F a(n) ~ (10*exp(7381/2520) - 9*exp(7129/2520)) * n^(n-1). - _Vaclav Kotesovec_, Aug 21 2014

%p with(combinat):

%p b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,

%p add((i-1)!^j*multinomial(n, n-i*j, i$j)/j!*

%p b(n-i*j, i-1), j=0..n/i)))

%p end:

%p A:= (n, k)-> add(binomial(n-1, j-1)*n^(n-j)*b(j, min(j, k)), j=0..n):

%p a:= n-> A(n, 10) -A(n, 9):

%p seq(a(n), n=10..25);

%Y Column k=10 of A241981.

%K nonn

%O 10,1

%A _Alois P. Heinz_, Aug 19 2014