The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A246617 Number of endofunctions on [n] whose cycle lengths are multiples of 10. 2
 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 362880, 39916800, 2874009600, 175394419200, 9967384627200, 551675124000000, 30471021291110400, 1703458301210265600, 97213825272736972800, 5693251850259515942400, 343266731083210449715200, 21349233350716392722764800 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,11 COMMENTS In general, column k of A246609 is (for k > 1) asymptotic to n^(n-1/2 + 1/(2*k)) * sqrt(2*Pi) / (2^(1/(2*k)) * k^(1/k) * GAMMA(1/(2*k))) * (1 - (3*k-1)*(k-1) * sqrt(2/n) * GAMMA(1/(2*k)) / (12 * k^2 * GAMMA(1/2 + 1/(2*k)))). - Vaclav Kotesovec, Sep 01 2014 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..300 FORMULA E.g.f.: 1/(1-LambertW(-x)^10)^(1/10). - Vaclav Kotesovec, Sep 01 2014 a(n) ~ n^(n-9/20) * 2^(7/20) * sqrt(Pi) / (5^(1/10) * GAMMA(1/20)) * (1 - 87 * sqrt(2/n) * GAMMA(1/20) / (400 * GAMMA(11/20))). - Vaclav Kotesovec, Sep 01 2014 MAPLE with(combinat): b:= proc(n, i) option remember; `if`(n=0, 1,       `if`(i>n, 0, add(b(n-i*j, i+10)*(i-1)!^j*       multinomial(n, n-i*j, i\$j)/j!, j=0..n/i)))     end: a:= a->add(b(j, 10)*n^(n-j)*binomial(n-1, j-1), j=0..n): seq(a(n), n=0..25); MATHEMATICA CoefficientList[Series[1/(1-LambertW[-x]^10)^(1/10), {x, 0, 20}], x] * Range[0, 20]!  (* Vaclav Kotesovec, Sep 01 2014 *) CROSSREFS Column k=10 of A246609. Sequence in context: A213871 A179064 A246197 * A246220 A160319 A227671 Adjacent sequences:  A246614 A246615 A246616 * A246618 A246619 A246620 KEYWORD nonn AUTHOR Alois P. Heinz, Aug 31 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 22 09:50 EDT 2022. Contains 353949 sequences. (Running on oeis4.)