login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A246130 Binomial(2n,n)-2 mod n. 6
0, 0, 0, 0, 0, 4, 0, 4, 0, 4, 0, 2, 0, 4, 13, 4, 0, 4, 0, 18, 4, 4, 0, 10, 0, 4, 18, 26, 0, 2, 0, 4, 7, 4, 5, 14, 0, 4, 18, 18, 0, 40, 0, 2, 43, 4, 0, 10, 0, 4, 1, 42, 0, 4, 30, 30, 37, 4, 0, 34, 0, 4, 10, 4, 3, 64, 0, 34, 64, 38, 0, 34, 0, 4, 43, 30, 75, 64, 0, 18, 18, 4, 0, 26, 63, 4, 76, 86, 0, 38, 89, 22, 18, 4, 3, 58, 0
(list; graph; refs; listen; history; text; internal format)
OFFSET
1,6
COMMENTS
By Wolstenholme's theorem, when n>3 is prime and cb(n) is the central binomial coefficient A000984(n), then cb(n)-2 is divisible by n^3. This implies that it is also divisible by n^e for e=1,2 and 3, but not necessarily for e=4. It follows also that cn(n)-2, with cn(n)=cb(n)/(n+1) being the n-th Catalan number A000108(n), is divisible by any prime n. In fact, for any n>0, cn(n)-2 = (n+1)cb(n)-2 implies (cn(n)-2) mod n = (cb(n)-2) mod n = a(n). The sequence a(n) is of interest as a prime-testing sequence similar to Fermat's, albeit not a practical one until/unless an efficient algorithm to compute moduli of binomial coefficients is found. For more info, see A246131 through A246134.
LINKS
Eric Weisstein's World of Mathematics, Central Binomial Coefficient
FORMULA
For any prime p, a(p)=0.
EXAMPLE
a(7)=0 because cb(7)-2 = binomial(14,7) -2 = 3432-2 = 490*7. Check also that cn(7) = 3432/8 = 429 and 429-2 = 61*7 so that (cn(7)-2) mod 7 = 0.
PROG
(PARI) a(n) = (binomial(2*n, n)-2)%n
CROSSREFS
Cf. A000108, A000984, A128311, A246131 (pseudoprimes of a(n)), A246132 (e=2), A246133 (e=3), A246134 (e=4).
Sequence in context: A306488 A230031 A019920 * A010675 A035673 A035638
KEYWORD
nonn
AUTHOR
Stanislav Sykora, Aug 16 2014
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 19 02:20 EDT 2024. Contains 376003 sequences. (Running on oeis4.)