login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A035673
Number of partitions of n into parts 8k and 8k+2 with at least one part of each type.
3
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 4, 0, 4, 0, 4, 0, 4, 0, 10, 0, 11, 0, 11, 0, 11, 0, 22, 0, 25, 0, 26, 0, 26, 0, 44, 0, 51, 0, 54, 0, 55, 0, 84, 0, 98, 0, 105, 0, 108, 0, 153, 0, 178, 0, 193, 0, 200, 0, 269, 0, 313, 0, 341, 0, 356, 0, 459, 0, 531, 0, 582, 0, 611, 0
OFFSET
1,18
LINKS
FORMULA
G.f.: (-1 + 1/Product_{k>=0} (1 - x^(8*k + 2)))*(-1 + 1/Product_{k>=1} (1 - x^(8*k))). - Robert Price, Aug 12 2020
MATHEMATICA
nmax = 81; s1 = Range[1, nmax/8]*8; s2 = Range[0, nmax/8]*8 + 2;
Table[Count[IntegerPartitions[n, All, s1~Join~s2],
x_ /; ContainsAny[x, s1 ] && ContainsAny[x, s2 ]], {n, 1, nmax}] (* Robert Price, Aug 12 2020 *)
nmax = 81; l = Rest@CoefficientList[Series[(-1 + 1/Product[(1 - x^(8 k)), {k, 1, nmax}])*(-1 + 1/Product[(1 - x^(8 k + 2)), {k, 0, nmax}]), {x, 0, nmax}], x] (* Robert Price, Aug 12 2020 *)
CROSSREFS
Bisections give: A035621 (even part), A000004 (odd part).
Sequence in context: A019920 A246130 A010675 * A035638 A347156 A292142
KEYWORD
nonn
STATUS
approved