The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A035673 Number of partitions of n into parts 8k and 8k+2 with at least one part of each type. 3
 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 4, 0, 4, 0, 4, 0, 4, 0, 10, 0, 11, 0, 11, 0, 11, 0, 22, 0, 25, 0, 26, 0, 26, 0, 44, 0, 51, 0, 54, 0, 55, 0, 84, 0, 98, 0, 105, 0, 108, 0, 153, 0, 178, 0, 193, 0, 200, 0, 269, 0, 313, 0, 341, 0, 356, 0, 459, 0, 531, 0, 582, 0, 611, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,18 LINKS Robert Price, Table of n, a(n) for n = 1..1000 FORMULA G.f.: (-1 + 1/Product_{k>=0} (1 - x^(8*k + 2)))*(-1 + 1/Product_{k>=1} (1 - x^(8*k))). - Robert Price, Aug 12 2020 MATHEMATICA nmax = 81; s1 = Range[1, nmax/8]*8; s2 = Range[0, nmax/8]*8 + 2; Table[Count[IntegerPartitions[n, All, s1~Join~s2], x_ /; ContainsAny[x, s1 ] && ContainsAny[x, s2 ]], {n, 1, nmax}] (* Robert Price, Aug 12 2020 *) nmax = 81; l = Rest@CoefficientList[Series[(-1 + 1/Product[(1 - x^(8 k)), {k, 1, nmax}])*(-1 + 1/Product[(1 - x^(8 k + 2)), {k, 0, nmax}]), {x, 0, nmax}], x]  (* Robert Price, Aug 12 2020 *) CROSSREFS Cf. A035441-A035468, A035618-A035672, A035674-A035699. Bisections give: A035621 (even part), A000004 (odd part). Sequence in context: A019920 A246130 A010675 * A035638 A292142 A098002 Adjacent sequences:  A035670 A035671 A035672 * A035674 A035675 A035676 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 14 13:20 EDT 2021. Contains 343884 sequences. (Running on oeis4.)