login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A246029
a(n) = Product_{i in row n of A245562} prime(i).
6
1, 2, 2, 3, 2, 4, 3, 5, 2, 4, 4, 6, 3, 6, 5, 7, 2, 4, 4, 6, 4, 8, 6, 10, 3, 6, 6, 9, 5, 10, 7, 11, 2, 4, 4, 6, 4, 8, 6, 10, 4, 8, 8, 12, 6, 12, 10, 14, 3, 6, 6, 9, 6, 12, 9, 15, 5, 10, 10, 15, 7, 14, 11, 13, 2, 4, 4, 6, 4, 8, 6, 10, 4, 8, 8, 12, 6, 12, 10, 14, 4, 8, 8, 12, 8, 16, 12, 20, 6, 12, 12, 18
OFFSET
0,2
COMMENTS
This is the Run Length Transform of S(n) = {1,2,3,5,7,11,...} (1 followed by the primes).
The Run Length Transform of a sequence {S(n), n>=0} is defined to be the sequence {T(n), n>=0} given by T(n) = Product_i S(i), where i runs through the lengths of runs of 1's in the binary expansion of n. E.g., 19 is 10011 in binary, which has two runs of 1's, of lengths 1 and 2. So T(19) = S(1)*S(2). T(0)=1 (the empty product).
LINKS
Shalosh B. Ekhad, N. J. A. Sloane, and Doron Zeilberger, A Meta-Algorithm for Creating Fast Algorithms for Counting ON Cells in Odd-Rule Cellular Automata, arXiv:1503.01796 [math.CO], 2015; see also the Accompanying Maple Package.
Shalosh B. Ekhad, N. J. A. Sloane, and Doron Zeilberger, Odd-Rule Cellular Automata on the Square Grid, arXiv:1503.04249 [math.CO], 2015.
N. J. A. Sloane, On the No. of ON Cells in Cellular Automata, Video of talk in Doron Zeilberger's Experimental Math Seminar at Rutgers University, Feb. 05 2015: Part 1, Part 2
N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168 [math.CO], 2015.
FORMULA
a(n) = A181819(A005940(1+n)). - Antti Karttunen, Oct 15 2016
EXAMPLE
From Omar E. Pol, Feb 12 2015: (Start)
Written as an irregular triangle in which row lengths is A011782:
1;
2;
2,3;
2,4,3,5;
2,4,4,6,3,6,5,7;
2,4,4,6,4,8,6,10,3,6,6,9,5,10,7,11;
2,4,4,6,4,8,6,10,4,8,8,12,6,12,10,14,3,6,6,9,6,12,9,15,5,10,10,15,7,14,11,13;
...
Right border gives the noncomposite numbers. This is simply a restatement of the theorem that this sequence is the Run Length Transform of A008578.
(End)
MAPLE
ans:=[];
for n from 0 to 100 do lis:=[]; t1:=convert(n, base, 2); L1:=nops(t1); out1:=1; c:=0;
for i from 1 to L1 do
if out1 = 1 and t1[i] = 1 then out1:=0; c:=c+1;
elif out1 = 0 and t1[i] = 1 then c:=c+1;
elif out1 = 1 and t1[i] = 0 then c:=c;
elif out1 = 0 and t1[i] = 0 then lis:=[c, op(lis)]; out1:=1; c:=0;
fi;
if i = L1 and c>0 then lis:=[c, op(lis)]; fi;
od:
a:=mul(ithprime(i), i in lis);
ans:=[op(ans), a];
od:
ans;
MATHEMATICA
f[n_, i_, x_] := f[n, i, x] = Which[n == 0, x, EvenQ[n], f[n/2, i + 1, x], True, f[(n - 1)/2, i, x*Prime[i]]];
a5940[n_] := f[n - 1, 1, 1];
a181819[n_] := Times @@ Prime[FactorInteger[n][[All, 2]]];
a[0] = 1; a[n_] := a181819[a5940[n + 1]];
Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Aug 19 2018, after Antti Karttunen *)
PROG
(Python)
from operator import mul
from functools import reduce
from re import split
from sympy import prime
def A246029(n):
return reduce(mul, (prime(len(d)) for d in split('0+', bin(n)[2:]) if d != '')) if n > 0 else 1
# Chai Wah Wu, Sep 12 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Aug 15 2014; revised Sep 05 2014
STATUS
approved