login
A245922
First differences of A245921.
4
2, 3, 2, 8, 5, 8, 8, 5, 13, 21, 21, 13, 21, 13, 21, 21, 13, 21, 21, 13, 21, 34, 21, 34, 34, 21, 34, 21, 34, 34, 21, 34, 21, 34, 34, 21, 34, 34, 21, 34, 21, 34, 34, 55, 34, 55, 55, 34, 55, 55, 34, 55, 34, 55, 55, 34, 55, 55, 34, 55, 34, 55, 55, 34, 55, 34, 55
OFFSET
1,1
COMMENTS
See Comments at A245921. It appears that every term is a Fibonacci number (A000045).
EXAMPLE
(See A245921.)
MATHEMATICA
z = 100; seqPosition2[list_, seqtofind_] := Last[Last[Position[Partition[list, Length[#], 1], Flatten[{___, #, ___}], 1, 2]]] &[seqtofind] (*finds the position of the SECOND appearance of seqtofind. Example: seqPosition2[{1, 2, 3, 4, 2, 3}, {2}] = 5*)
A014675 = Nest[Flatten[# /. {1 -> 2, 2 -> {2, 1}}] &, {1}, 25]; ans = Join[{A014675[[p[0] = pos = seqPosition2[A014675, #] - 1]]}, #] &[{A014675[[1]]}];
cfs = Table[A014675 = Drop[A014675, pos - 1]; ans = Join[{A014675[[p[n] = pos = seqPosition2[A014675, #] - 1]]}, #] &[ans], {n, z}];
q = -1+Accumulate[Join[{1}, Table[p[n], {n, 0, z}]]] (* A245921 *)
q1 = Differences[q] (* A245922 *)
CROSSREFS
Sequence in context: A011280 A136193 A187789 * A098513 A134347 A057761
KEYWORD
nonn
AUTHOR
STATUS
approved