

A245922


First differences of A245921.


4



2, 3, 2, 8, 5, 8, 8, 5, 13, 21, 21, 13, 21, 13, 21, 21, 13, 21, 21, 13, 21, 34, 21, 34, 34, 21, 34, 21, 34, 34, 21, 34, 21, 34, 34, 21, 34, 34, 21, 34, 21, 34, 34, 55, 34, 55, 55, 34, 55, 55, 34, 55, 34, 55, 55, 34, 55, 55, 34, 55, 34, 55, 55, 34, 55, 34, 55
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

See Comments at A245921. It appears that every term is a Fibonacci number (A000045).


LINKS

Table of n, a(n) for n=1..67.


EXAMPLE

(See A245921.)


MATHEMATICA

z = 100; seqPosition2[list_, seqtofind_] := Last[Last[Position[Partition[list, Length[#], 1], Flatten[{___, #, ___}], 1, 2]]] &[seqtofind] (*finds the position of the SECOND appearance of seqtofind. Example: seqPosition2[{1, 2, 3, 4, 2, 3}, {2}] = 5*)
A014675 = Nest[Flatten[# /. {1 > 2, 2 > {2, 1}}] &, {1}, 25]; ans = Join[{A014675[[p[0] = pos = seqPosition2[A014675, #]  1]]}, #] &[{A014675[[1]]}];
cfs = Table[A014675 = Drop[A014675, pos  1]; ans = Join[{A014675[[p[n] = pos = seqPosition2[A014675, #]  1]]}, #] &[ans], {n, z}];
q = 1+Accumulate[Join[{1}, Table[p[n], {n, 0, z}]]] (* A245921 *)
q1 = Differences[q] (* A245922 *)


CROSSREFS

Cf. A245920, A245921.
Sequence in context: A011280 A136193 A187789 * A098513 A134347 A057761
Adjacent sequences: A245919 A245920 A245921 * A245923 A245924 A245925


KEYWORD

nonn


AUTHOR

Clark Kimberling and Peter J. C. Moses, Aug 07 2014


STATUS

approved



