%I
%S 2,3,2,8,5,8,8,5,13,21,21,13,21,13,21,21,13,21,21,13,21,34,21,34,34,
%T 21,34,21,34,34,21,34,21,34,34,21,34,34,21,34,21,34,34,55,34,55,55,34,
%U 55,55,34,55,34,55,55,34,55,55,34,55,34,55,55,34,55,34,55
%N First differences of A245921.
%C See Comments at A245921. It appears that every term is a Fibonacci number (A000045).
%e (See A245921.)
%t z = 100; seqPosition2[list_, seqtofind_] := Last[Last[Position[Partition[list, Length[#], 1], Flatten[{___, #, ___}], 1, 2]]] &[seqtofind] (*finds the position of the SECOND appearance of seqtofind. Example: seqPosition2[{1,2,3,4,2,3},{2}] = 5*)
%t A014675 = Nest[Flatten[# /. {1 > 2, 2 > {2, 1}}] &, {1}, 25]; ans = Join[{A014675[[p[0] = pos = seqPosition2[A014675, #]  1]]}, #] &[{A014675[[1]]}];
%t cfs = Table[A014675 = Drop[A014675, pos  1]; ans = Join[{A014675[[p[n] = pos = seqPosition2[A014675, #]  1]]}, #] &[ans], {n, z}];
%t q = 1+Accumulate[Join[{1}, Table[p[n], {n, 0, z}]]] (* A245921 *)
%t q1 = Differences[q] (* A245922 *)
%Y Cf. A245920, A245921.
%K nonn
%O 1,1
%A _Clark Kimberling_ and _Peter J. C. Moses_, Aug 07 2014
