login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A245924
Expansion of (1-x - sqrt(1 - 14*x + x^2)) / (6*x*(1 - 14*x + x^2)).
3
1, 18, 279, 4132, 59949, 860022, 12252547, 173756232, 2456093529, 34634926810, 487525847535, 6852798238572, 96216461002117, 1349689029354558, 18918661407653979, 265016591806251664, 3710426585319049905, 51924984423522889122, 726369947645489367751, 10157588028419864394420
OFFSET
0,2
COMMENTS
Self-convolution of A245927.
Limit a(n+1)/a(n) = 7 + 4*sqrt(3).
LINKS
FORMULA
a(n) ~ (26 + 15*sqrt(3)) * (7 + 4*sqrt(3))^n / 24 * (1 - 1/(3^(1/4)*sqrt(Pi*n/2))). - Vaclav Kotesovec, Aug 17 2014
D-finite with recurrence: (n+1)*a(n) +7*(-4*n-1)*a(n-1) +99*(2*n-1)*a(n-2) +7*(-4*n+5)*a(n-3) +(n-2)*a(n-4)=0. - R. J. Mathar, Jan 23 2020
EXAMPLE
G.f.: A(x) = 1 + 18*x + 279*x^2 + 4132*x^3 + 59949*x^4 + 860022*x^5 +...
MATHEMATICA
CoefficientList[Series[(1 - x - Sqrt[1 - 14*x + x^2])/(6*x*(1 - 14*x + x^2)), {x, 0, 50}], x] (* G. C. Greubel, Feb 14 2017 *)
PROG
(PARI) {a(n)=polcoeff( (1-x - sqrt(1-14*x+x^2 +x^2*O(x^n))) / (6*x*(1-14*x+x^2 +x*O(x^n))), n)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Sequence in context: A115903 A004357 A249598 * A368526 A035119 A230235
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 16 2014
STATUS
approved