login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of (1-x - sqrt(1 - 14*x + x^2)) / (6*x*(1 - 14*x + x^2)).
3

%I #13 Jan 30 2020 21:29:17

%S 1,18,279,4132,59949,860022,12252547,173756232,2456093529,34634926810,

%T 487525847535,6852798238572,96216461002117,1349689029354558,

%U 18918661407653979,265016591806251664,3710426585319049905,51924984423522889122,726369947645489367751,10157588028419864394420

%N Expansion of (1-x - sqrt(1 - 14*x + x^2)) / (6*x*(1 - 14*x + x^2)).

%C Self-convolution of A245927.

%C Limit a(n+1)/a(n) = 7 + 4*sqrt(3).

%H G. C. Greubel, <a href="/A245924/b245924.txt">Table of n, a(n) for n = 0..870</a>

%F a(n) ~ (26 + 15*sqrt(3)) * (7 + 4*sqrt(3))^n / 24 * (1 - 1/(3^(1/4)*sqrt(Pi*n/2))). - _Vaclav Kotesovec_, Aug 17 2014

%F D-finite with recurrence: (n+1)*a(n) +7*(-4*n-1)*a(n-1) +99*(2*n-1)*a(n-2) +7*(-4*n+5)*a(n-3) +(n-2)*a(n-4)=0. - _R. J. Mathar_, Jan 23 2020

%e G.f.: A(x) = 1 + 18*x + 279*x^2 + 4132*x^3 + 59949*x^4 + 860022*x^5 +...

%t CoefficientList[Series[(1 - x - Sqrt[1 - 14*x + x^2])/(6*x*(1 - 14*x + x^2)), {x,0,50}], x] (* _G. C. Greubel_, Feb 14 2017 *)

%o (PARI) {a(n)=polcoeff( (1-x - sqrt(1-14*x+x^2 +x^2*O(x^n))) / (6*x*(1-14*x+x^2 +x*O(x^n))), n)}

%o for(n=0, 20, print1(a(n), ", "))

%Y Cf. A245923, A245927.

%K nonn

%O 0,2

%A _Paul D. Hanna_, Aug 16 2014