OFFSET
1,1
COMMENTS
Table starts
.....6.......19........36.........61..........90..........127..........168
....10.......45.......100........193.........318..........493..........712
....16......103.......256........549.........960.........1579.........2368
....26......239.......676.......1629........3102.........5515.........8840
....42......553......1764.......4753........9726........18505........31176
....68.....1281......4624......13961.......30900........63241.......113024
...110.....2967.....12100......40901.......97602.......214315.......404264
...178.....6873.....31684.....119953......309078.......729097......1455496
...288....15921.....82944.....351649......977664......2475985......5223552
...466....36881....217156....1031057.....3094038......8415217.....18775816
...754....85435....568516....3022933.....9789654.....28590415.....67437448
..1220...197911...1488400....8863117....30977796.....97151683....242306240
..1974...458463...3896676...25986061....98020170....330100459....870461352
..3194..1062035..10201636...76189749...310161870...1121650903...3127322696
..5168..2460217..26708224..223384017...981426624...3811203385..11235107264
..8362..5699123..69923044..654949861..3105480558..12950003383..40363689352
.13530.13202089.183060900.1920277409..9826505742..44002376953.145010699592
.21892.30582803.479259664.5630150189.31093507092.149514426895.520968428032
LINKS
R. H. Hardin, Table of n, a(n) for n = 1..9999
Robert Israel, Proof of recurrences for columns
Robert Israel et al, A Pattern for OEIS Sequence A245869, Mathematics StackExchange, Jul 29-30, 2024.
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2)
k=2: a(n) = 2*a(n-1) +a(n-2) -a(n-4) -a(n-5)
k=3: a(n) = 2*a(n-1) +2*a(n-2) -a(n-3)
k=4: a(n) = 3*a(n-1) +a(n-2) -a(n-3) -5*a(n-4) -8*a(n-5) +3*a(n-6)
k=5: a(n) = 2*a(n-1) +4*a(n-2) -a(n-3)
k=6: a(n) = 3*a(n-1) +3*a(n-2) -a(n-3) -9*a(n-4) -24*a(n-5) +5*a(n-6)
k=7: a(n) = 2*a(n-1) +6*a(n-2) -a(n-3)
k=8: a(n) = 3*a(n-1) +5*a(n-2) -a(n-3) -13*a(n-4) -48*a(n-5) +7*a(n-6)
k=9: a(n) = 2*a(n-1) +8*a(n-2) -a(n-3)
Empirical for row n:
n=1: a(n) = 2*a(n-1) -2*a(n-3) +a(n-4)
n=2: a(n) = 3*a(n-1) -2*a(n-2) -2*a(n-3) +3*a(n-4) -a(n-5)
n=3: a(n) = 2*a(n-1) +a(n-2) -4*a(n-3) +a(n-4) +2*a(n-5) -a(n-6)
n=4: a(n) = 3*a(n-1) -a(n-2) -5*a(n-3) +5*a(n-4) +a(n-5) -3*a(n-6) +a(n-7)
n=5: a(n) = 2*a(n-1) +2*a(n-2) -6*a(n-3) +6*a(n-5) -2*a(n-6) -2*a(n-7) +a(n-8)
n=6: a(n) = 3*a(n-1) -8*a(n-3) +6*a(n-4) +6*a(n-5) -8*a(n-6) +3*a(n-8) -a(n-9)
n=7: a(n) = 2*a(n-1) +3*a(n-2) -8*a(n-3) -2*a(n-4) +12*a(n-5) -2*a(n-6) -8*a(n-7) +3*a(n-8) +2*a(n-9) -a(n-10)
From Robert Israel, Aug 06 2024: (Start) For odd k, T(n,k) = 2 T(n-1,k) + (k-1) T(n-2,k) - T(n-3,k).
For even k, T(n,k) = 3 T(n-1,k) + (k-3) T(n-2,k) - T(n-3,k) + (2 k - 3) T(n-4,k) - k (k-2) T(n-5,k) + (k-1) T(n-6,k).
See links. (End)
EXAMPLE
Some solutions for n=6 k=4
..1....4....0....4....0....1....2....3....1....2....0....3....3....0....2....4
..4....2....1....1....4....2....4....1....0....3....1....0....3....4....1....3
..0....2....4....0....3....2....0....3....3....1....3....1....1....2....3....1
..4....0....0....4....0....1....4....0....1....1....1....3....0....0....4....3
..4....2....4....4....4....2....1....4....4....3....2....1....4....4....1....2
..0....2....0....0....3....2....0....0....0....3....2....2....4....3....0....2
..2....0....4....4....0....1....4....4....3....1....4....3....0....1....4....2
..4....4....0....1....1....2....3....0....1....4....0....1....0....2....1....2
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Aug 04 2014
STATUS
approved