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 Consider the last two entries of an array as its "state".  These fall into the following classes:

(a)   where , i.e. .

(b)   (  where and neither  nor  is .

(c)   (  where .

(d)   where .

(e)   where .

(f)   

The last three states are only present when  is even.  We'll first consider the case where  is odd.  

If we have an allowed array of length +2 with state (a), then we can extend it to an array of length 
 of state (a) in one way, by appending , or an array of state (c) by appending , or an array of 

state (b) by appending any of the other  possible elements. 

An allowed array of state (b) can go to state (a) by appending , or (b) by appending .  

An array of state (c) can go to (a) by appending .  No other elements can be appended without 
violating the constraint that some pair adds to .  

Thus if  is the column vector whose entries are the numbers of allowed arrays of length  in states 
 to , we have  where  is the transition matrix
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Taking and e , we have e e .  To check, here are 

, the fifth column of the table, for  from 1 to 10.

e:= Vector[column](3,1): v0:= <k+1,k^2-1,k+1>: M:= <<1,k-1,1>|<1,
1,0>|<1,0,0>>: 
M5:= eval(M,k=5): v5:= eval(v0,k=5):
seq(e^%T . M5^n . v5, n=1..10);

Now it turns out that the vectors and  are linearly dependent.  To see this, we 
form a matrix with these vectors as columns and find its rank and null space.

Q:= map(normal,<M^3 . v0| M^2 . v0| M . v0| v0>)

with(LinearAlgebra): Rank(Q);
3

NullSpace(Q);

This says that , which implies the recurrence for odd : 

Now consider the case where  is even, and we have  states to consider.  
From state (a), you could get to (a) by appending , or (b) by appending anything other than ,  or

 or (c) by appending . or (d) by appending .

From state (b), you could get to (a) by appending , or (b) by appending 
From state (c), you could get to (a) by appending 

From state (d), you could get to (e) by appending , or (f) by appending .

From state (e), you could get to (a) by appending or (d) by appending .

From state (f), you could get to (e) by appending anything other than , or (f) by appending .

Thus in this case the matrix is
M:= <<1,k-2,1,1,0,0>|<1,1,0,0,0,0>|<1,0,0,0,0,0>|<0,0,0,0,1,
1>|<1,0,0,1,0,0>|<0,0,0,0,k,1>>;
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and the initial vector is
v0:= <k,k*(k-2),k,k,k,1>;

To check, we'll compute  for  from  to 10.
M6:= eval(M,k=6): v6:= eval(v0,k=6): e:= Vector(6,1):
seq(e^%T . M6^n . v6, n=1..10);

Q:= <M^6 . v0 | M^5 . v0 | M^4 . v0 | M^3 . v0 | M^2 . v0 | M . 
v0 | v0>:
Rank(Q);
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NullSpace(Q);
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Thus we find that 
, 

which implies the recurrence for even :

.


