|
|
A245868
|
|
Number of length n+2 0..7 arrays with some pair in every consecutive three terms totalling exactly 7.
|
|
1
|
|
|
168, 712, 2368, 8840, 31176, 113024, 404264, 1455496, 5223552, 18775816, 67437448, 242306240, 870461352, 3127322696, 11235107264, 40363689352, 145010699592, 520968428032, 1871637364264, 6724074597128, 24157004951808, 86786820122120
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
R. H. Hardin, Table of n, a(n) for n = 1..210
Robert Israel, Maple-assisted derivation of recurrence
|
|
FORMULA
|
Empirical: a(n) = 2*a(n-1) + 6*a(n-2) - a(n-3).
Empirical g.f.: 8*x*(21 + 47*x - 8*x^2) / (1 - 2*x - 6*x^2 + x^3). - Colin Barker, Nov 04 2018
Empirical recurrence verified: see link. - Robert Israel, May 13 2020
|
|
EXAMPLE
|
Some solutions for n=6:
..4....6....7....0....7....3....6....4....0....2....6....1....6....5....0....2
..2....4....6....0....2....6....3....5....7....6....0....7....6....6....7....5
..3....3....1....7....0....1....4....2....6....1....1....0....1....2....6....6
..5....6....4....4....5....6....0....6....1....1....6....1....1....1....0....1
..2....1....3....0....2....5....7....5....0....6....7....6....6....6....7....7
..4....6....4....3....4....2....2....2....7....1....0....6....7....7....2....6
..5....3....3....4....3....5....5....0....5....1....7....1....0....0....5....1
..2....4....2....3....2....4....6....5....2....6....0....2....2....6....3....7
|
|
CROSSREFS
|
Column 7 of A245869.
Sequence in context: A157998 A234823 A234816 * A251461 A110285 A302887
Adjacent sequences: A245865 A245866 A245867 * A245869 A245870 A245871
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
R. H. Hardin, Aug 04 2014
|
|
STATUS
|
approved
|
|
|
|