login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A245652
Decimal expansion of a coefficient associated with the asymptotics of the average distance between a vertex and the root of a random rooted tree.
1
1, 1, 3, 6, 5, 5, 9, 9, 1, 8, 7, 8, 6, 6, 0, 0, 6, 4, 3, 2, 3, 6, 0, 3, 4, 3, 6, 6, 1, 4, 0, 9, 5, 3, 4, 4, 7, 3, 4, 3, 8, 2, 2, 8, 7, 5, 0, 3, 4, 3, 8, 3, 3, 2, 6, 1, 6, 7, 2, 6, 3, 8, 1, 5, 6, 8, 4, 3, 1, 1, 4, 7, 2, 4, 7, 9, 4, 4, 7, 9, 4, 8, 7, 4, 8
OFFSET
1,3
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.6 Otter's Tree Enumeration Constants, pp. 304, 308.
LINKS
Eric Weisstein's World of Mathematics, Tree.
FORMULA
Average distance for n vertices ~ (1/2)*(2*Pi/beta)^(1/3)*n^(1/2).
EXAMPLE
1.1365599187866006432360343661409534473438228750343833261672638156843...
MATHEMATICA
beta = 0.53494960614230701455037971105206839814311651405699009397707681023752321788064067239783; (* after A086308 and Vaclav Kotesovec's computation *) RealDigits[(1/2)*(2*Pi/beta)^(1/3), 10, 85] // First
CROSSREFS
Sequence in context: A291050 A268981 A353909 * A106109 A275925 A282581
KEYWORD
nonn,cons,more
AUTHOR
STATUS
approved