login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A245654
Decimal expansion of the smallest positive root of the function lambda(x) = sum_{n=0..infinity} (-1)^n*x^n/(2^(n*(n-1)/2)*n!).
1
1, 4, 8, 8, 0, 7, 8, 5, 4, 5, 5, 9, 9, 7, 1, 0, 2, 9, 4, 6, 5, 6, 2, 4, 6, 0, 3, 1, 5, 8, 2, 3, 5, 7, 6, 6, 1, 8, 9, 3, 5, 1, 6, 1, 5, 2, 6, 0, 2, 9, 9, 0, 8, 0, 7, 7, 4, 9, 7, 2, 6, 8, 2, 5, 0, 1, 2, 5, 0, 5, 4, 8, 0, 6, 9, 1, 8, 5, 8, 3, 5, 7, 8, 8, 9, 9, 2, 9, 2, 5, 5, 3, 9, 5, 6, 8, 7, 4, 9, 2, 9, 7, 5
OFFSET
1,2
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.6 Otter's Tree Enumeration Constants, p. 310.
EXAMPLE
1.48807854559971029465624603158235766189351615260299080774972682501250548...
MATHEMATICA
digits = 103; lambda[x_?NumericQ] := NSum[(-1)^n*x^n/(2^(n*(n - 1)/2)*n!), {n, 0, Infinity}, WorkingPrecision -> digits + 10, Method -> "AlternatingSigns"]; xi = x /. FindRoot[lambda[x] == 0, {x, 3/2}, WorkingPrecision -> digits + 10]; RealDigits[xi, 10, digits] // First
CROSSREFS
Cf. A003024.
Sequence in context: A082210 A196282 A196332 * A135863 A176221 A021676
KEYWORD
nonn,cons
AUTHOR
STATUS
approved