OFFSET
1,3
LINKS
Michael S. Branicky, Table of n, a(n) for n = 1..10000
Project Euler, Problem 795: Alternating gcd sum, (2022)
Laszlo Toth, Weighted gcd-sum functions, J. Integer Sequences, 14 (2011), Article 11.7.7.
FORMULA
a(n) = Sum_{i=1..n} (-1)^i*gcd(n, i^2).
a(n) = -n if n is odd.
a(n) = n * Sum_{d|n, d even} (phi(d) * sqrt(d/core(d)) / d), where phi = A000010, if n is even. - Darío Clavijo, Jan 13 2023
MAPLE
a:= n-> add((-1)^i*igcd(n, i^2), i=1..n):
seq(a(n), n=1..60); # Alois P. Heinz, Jan 13 2023
MATHEMATICA
a[n_] := Sum[(-1)^i * GCD[n, i^2], {i, 1, n}]; Array[a, 100] (* Amiram Eldar, May 10 2022 *)
PROG
(PARI) a(n) = sum(i=1, n, (-1)^i*gcd(n, i^2)); \\ Michel Marcus, May 10 2022
(PARI) a(n) = {
if((n%2)==1, return(-n));
my(s=0);
fordivfactored(n, d,
if((d[1]%2)==0,
s+=eulerphi(d)*core(d, 1)[2]/d[1]));
s*n;
} \\ Yurii Ivanov, Jun 20 2022
(Python)
from math import gcd
def a(n):
return -n if n%2==1 else sum((-1)**k*gcd(n, k*k) for k in range(1, n+1))
print([a(n) for n in range(1, 60)]) # Michael S. Branicky, May 28 2022
(Python)
from sympy import sqrt, divisors, totient
from sympy.ntheory.factor_ import core
def a(n):
return -n if n & 1 == 1 else int(n * sum(totient(d) * sqrt(d // core(d)) / d for d in divisors(n) if d & 1 == 0))
# Darío Clavijo, Dec 29 2022
CROSSREFS
KEYWORD
sign
AUTHOR
Thomas Baeyens, May 10 2022
STATUS
approved