login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A245483
Semiprimes of the form m^10 - m^9 + m^8 - m^7 + m^6 - m^5 + m^4 - m^3 + m^2 - m + 1.
1
44287, 838861, 247165843, 3138105961, 269971011311, 540609741211, 1034834473201, 3382547898907, 5824512944911, 9752380952381, 25405143539623, 91699453500601, 406683658856861, 794014903012651, 2005395532515211, 7936895933061811, 10230009756097561, 13103072183720201
OFFSET
1,1
COMMENTS
All the terms in sequence are odd semiprimes, but none is congruent to 5 or 9 (mod 10).
LINKS
EXAMPLE
m = 3: m^10 - m^9 + m^8 - m^7 + m^6 - m^5 + m^4 - m^3 + m^2 - m + 1 = 44287 = 67 * 661, which is semiprime and appears in the sequence.
m = 7: m^10 - m^9 + m^8 - m^7 + m^6 - m^5 + m^4 - m^3 + m^2 - m + 1 = 247165843 = 23 * 10746341, which is semiprime and appears in the sequence.
MATHEMATICA
A245483 = {}; k = n^10 - n^9 + n^8 - n^7 + n^6 - n^5 + n^4 - n^3 + n^2 - n + 1; Do[If[PrimeOmega[k] == 2, AppendTo[A245483, k]], {n, 100}]; A245483
Select[Table[1-n+n^2-n^3+n^4-n^5+n^6-n^7+n^8-n^9+n^10, {n, 100}], PrimeOmega[ #] ==2&] (* Harvey P. Dale, Oct 10 2018 *)
PROG
(PARI)
for(n=1, 10^3, s=sum(i=0, 10, (-n)^i); if(bigomega(s)==2, print1(s, ", "))) \\ Derek Orr, Aug 03 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
K. D. Bajpai, Jul 23 2014
STATUS
approved