Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Oct 10 2018 11:54:27
%S 44287,838861,247165843,3138105961,269971011311,540609741211,
%T 1034834473201,3382547898907,5824512944911,9752380952381,
%U 25405143539623,91699453500601,406683658856861,794014903012651,2005395532515211,7936895933061811,10230009756097561,13103072183720201
%N Semiprimes of the form m^10 - m^9 + m^8 - m^7 + m^6 - m^5 + m^4 - m^3 + m^2 - m + 1.
%C All the terms in sequence are odd semiprimes, but none is congruent to 5 or 9 (mod 10).
%H K. D. Bajpai, <a href="/A245483/b245483.txt">Table of n, a(n) for n = 1..14530</a>
%e m = 3: m^10 - m^9 + m^8 - m^7 + m^6 - m^5 + m^4 - m^3 + m^2 - m + 1 = 44287 = 67 * 661, which is semiprime and appears in the sequence.
%e m = 7: m^10 - m^9 + m^8 - m^7 + m^6 - m^5 + m^4 - m^3 + m^2 - m + 1 = 247165843 = 23 * 10746341, which is semiprime and appears in the sequence.
%t A245483 = {}; k = n^10 - n^9 + n^8 - n^7 + n^6 - n^5 + n^4 - n^3 + n^2 - n + 1; Do[If[PrimeOmega[k] == 2, AppendTo[A245483, k]], {n, 100}]; A245483
%t Select[Table[1-n+n^2-n^3+n^4-n^5+n^6-n^7+n^8-n^9+n^10,{n,100}],PrimeOmega[ #] ==2&] (* _Harvey P. Dale_, Oct 10 2018 *)
%o (PARI)
%o for(n=1,10^3,s=sum(i=0,10,(-n)^i);if(bigomega(s)==2,print1(s,", "))) \\ _Derek Orr_, Aug 03 2014
%Y Cf. A001358, A162861, A245393.
%K nonn
%O 1,1
%A _K. D. Bajpai_, Jul 23 2014