The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A245320 Coefficients of "optimum L" polynomials L_n(ω^2) ordered by increasing powers. 0
 0, 0, 1, 0, 0, 1, 0, 1, -3, 3, 0, 0, 3, -8, 6, 0, 1, -8, 28, -40, 20, 0, 0, 6, -40, 105, -120, 50, 0, 1, -15, 105, -355, 615, -525, 175, 0, 0, 10, -120, 615, -1624, 2310, -1680, 490, 0, 1, -24, 276, -1624, 5376, -10416, 11704, -7056, 1764, 0, 0, 15, -280 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,9 COMMENTS Used in the generation of "optimum L" (or Legendre-Papoulis) filters. REFERENCES A. Papoulis, “Optimum Filters with Monotonic Response,” Proc. IRE, 46, No. 3, March 1958, pp. 606-609 A. Papoulis, ”On Monotonic Response Filters,” Proc. IRE, 47, No. 2, Feb. 1959, 332-333 (correspondence section) LINKS C. Bond, Optimum “L” Filters: Polynomials, Poles and Circuit Elements, 2004 C. Bond, Notes on “L” (Optimal) Filters, 2011 EXAMPLE Triangle begins: 0; 0, 1; 0, 0,  1; 0, 1, -3,   3; 0, 0,  3,  -8,  6; 0, 1, -8,  28, -40,   20; 0, 0,  6, -40, 105, -120, 50; ... So: L_4(ω^2) = 0 + 0ω^2 + 3ω^4 -  8ω^6 +  6ω^8 L_5(ω^2) = 0 + 1ω^2 - 8ω^4 + 28ω^6 - 40ω^8 + 20ω^10 CROSSREFS Derived from A100258 and A060818. Sequence in context: A109247 A021307 A170852 * A330341 A152893 A297978 Adjacent sequences:  A245317 A245318 A245319 * A245321 A245322 A245323 KEYWORD sign,tabl AUTHOR Jonathan Bright, Jul 17 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 19 03:18 EST 2020. Contains 331031 sequences. (Running on oeis4.)