The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A335682 Array read by antidiagonals: T(m,n) (m>=1, n>=1) = number of simple interior vertices in figure formed by taking m equally spaced points on a line and n equally spaced points on a parallel line, and joining each of the m points to each of the n points by a line segment. 5
0, 0, 0, 0, 1, 0, 0, 3, 3, 0, 0, 6, 6, 6, 0, 0, 10, 12, 12, 10, 0, 0, 15, 18, 24, 18, 15, 0, 0, 21, 27, 36, 36, 27, 21, 0, 0, 28, 36, 54, 54, 54, 36, 28, 0, 0, 36, 48, 72, 82, 82, 72, 48, 36, 0, 0, 45, 60, 96, 108, 124, 108, 96, 60, 45, 0, 0, 55, 75, 120, 144, 163, 163, 144, 120, 75, 55, 0 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
1,8
COMMENTS
A simple interior vertex is a vertex where exactly two lines cross. In graph theory terms, this is an interior vertex of degree 4.
The case m=n (the main diagonal) is dealt with in A334701. A306302 has illustrations for the diagonal case for m = 1 to 15.
Also A335678 has colored illustrations for many values of m and n.
This is the only one of the five arrays (A335678-A335682) that does not have an explicit formula.
Let G_m(x) = g.f. for row m. For m <= 9, G_m appears to be a rational function of x with denominator D_m(x), where (writing C_k for the k-th cyclotomic polynomial):
D_3 = D_4 = C_1^3*C_2
D_5 = C_1^3*C_2*C_4
D_6 = C_1^3*C_2*C_4*C_5
D_7 = C_1^3*C_2*C_3*C_4*C_5*C_6
D_8 = D_9 = C_1^3*C_2*C_3*C_4*C_5*C_6*C_7
LINKS
Lars Blomberg, Table of n, a(n) for n = 1..9870 (the first 140 antidiagonals)
EXAMPLE
The initial rows of the array are:
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, ...
0, 3, 6, 12, 18, 27, 36, 48, 60, 75, 90, 108, ...
0, 6, 12, 24, 36, 54, 72, 96, 120, 150, 180, 216, ...
0, 10, 18, 36, 54, 82, 108, 144, 180, 226, 270, 324, ...
0, 15, 27, 54, 82, 124, 163, 217, 272, 342, 408, 489, ...
0, 21, 36, 72, 108, 163, 214, 286, 358, 451, 536, 642, ...
0, 28, 48, 96, 144, 217, 286, 382, 478, 602, 715, 856, ...
0, 36, 60, 120, 180, 272, 358, 478, 598, 754, 894, 1070, ...
0, 45, 75, 150, 226, 342, 451, 602, 754, 950, 1126, 1347, ...
0, 55, 90, 180, 270, 408, 536, 715, 894, 1126, 1334, 1597, ...
0, 66, 108, 216, 324, 489, 642, 856, 1070, 1347, 1597, 1912, ...
...
The initial antidiagonals are:
0
0, 0
0, 1, 0
0, 3, 3, 0
0, 6, 6, 6, 0
0, 10, 12, 12, 10, 0
0, 15, 18, 24, 18, 15, 0
0, 21, 27, 36, 36, 27, 21, 0
0, 28, 36, 54, 54, 54, 36, 28, 0
0, 36, 48, 72, 82, 82, 72, 48, 36, 0
0, 45, 60, 96, 108, 124, 108, 96, 60, 45, 0
0, 55, 75, 120, 144, 163, 163, 144, 120, 75, 55, 0
...
CROSSREFS
This is one of a set of five arrays: A335678, A335679, A335680, A335681, A335682.
For the diagonal case see A306302, A331755, A334701.
Sequence in context: A245320 A330341 A152893 * A335681 A297978 A298629
KEYWORD
nonn,tabl
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 20 14:08 EDT 2024. Contains 372717 sequences. (Running on oeis4.)