|
|
A152893
|
|
Periodic sequence [3, 3, 0, 0, 4] of period 5.
|
|
1
|
|
|
3, 3, 0, 0, 4, 3, 3, 0, 0, 4, 3, 3, 0, 0, 4, 3, 3, 0, 0, 4, 3, 3, 0, 0, 4, 3, 3, 0, 0, 4, 3, 3, 0, 0, 4, 3, 3, 0, 0, 4, 3, 3, 0, 0, 4, 3, 3, 0, 0, 4
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
LINKS
|
|
|
FORMULA
|
a(n+5) = a(n) with a(0) = a(1) = 3, a(2) = a(3) = 0 and a(4) = 4.
O.g.f: ((3+3*z+4*z^4)/(1-z^5)).
a(n) = 2+(1/2+7/10*5^(1/2))*cos(2*n*Pi/5)+(-1/10*2^(1/2)*(5+5^(1/2))^(1/2))*sin(2*n*Pi/5)+(1/2-7/10*5^(1/2))*cos(4*n*Pi/5)+(-1/10*2^(1/2)*(5-5^(1/2))^(1/2))*sin(4*n*Pi/5).
a(n) = (1/5)*{2*(n mod 5)-3*[(n+1) mod 5]+[(n+2) mod 5]+4*[(n+3) mod 5]+[(n+4) mod 5]}, with n>=0. [Paolo P. Lava, Dec 15 2008]
a(n) = [(n-2)^3 -(n-2)^2] mod 5. [Gary Detlefs, Mar 20 2010]
|
|
MATHEMATICA
|
|
|
CROSSREFS
|
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|