login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A245313
G.f. satisfies: A(x) = 1 + x*A(x) + x^2*A(x)^2 + 3*x^3*A(x)*A'(x) + x^4*A(x)*A''(x).
3
1, 1, 2, 7, 31, 176, 1158, 8919, 76751, 742597, 7865088, 91553100, 1150905332, 15665172108, 227991734414, 3554320236911, 58795765799791, 1033303679424539, 19151079894682674, 374662948814998855, 7691131223011551255, 165785969673935575904, 3734170668741419488552
OFFSET
0,3
COMMENTS
Do the following limits exist? If so, what are the respective values?
(1) limit a(n)*sqrt(n+1)/(n+1)! ? (Value is near 0.718490 at n=400.)
(2) limit A245313(n)/A245312(n) ? (Value is near 2.721747 at n=400.)
Limit a(n)*sqrt(n+1)/(n+1)! = 0.7189460513696389360211370..., limit A245313(n)/A245312(n) = e. - Vaclav Kotesovec, Jul 20 2014
LINKS
FORMULA
G.f. A(x) satisfies:
(1) A(x) = 1/(1-x - x^2*Dx^2(A(x))) where Dx(F(x)) = d/dx x*F(x).
(2) A(x) = G(x*A(x)) where G(x) = A(x/G(x)) is the g.f. of A245312.
(3) A(x) = (1/x)*Series_Reversion(x/G(x)) where G(x) is the g.f. of A245312.
a(n) = [x^n] G(x)^(n+1)/(n+1) for n>=0 where G(x) is the g.f. of A245312.
a(n) = [x^(n+2)] G(x)^(n+1)/(n+1)^3 for n>=0 where G(x) is the g.f. of A245312.
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 7*x^3 + 31*x^4 + 176*x^5 + 1158*x^6 +...
where A(x) = 1 / (1-x - x^2*A(x) - 3*x^3*A'(x) - x^4*A''(x)).
Define Dx(A(x)) = d/dx x*A(x) = A(x) + x*A'(x):
Dx(A(x)) = 1 + 2*x + 6*x^2 + 28*x^3 + 155*x^4 + 1056*x^5 + 8106*x^6 +...
so that Dx^2(A(x)) = d/dx x*(d/dx x*A(x)) = A(x) + 3*x*A'(x) + x^2*A''(x):
Dx^2(A(x)) = 1 + 4*x + 18*x^2 + 112*x^3 + 775*x^4 + 6336*x^5 +...
then A(x) = 1/(1-x - x^2*Dx^2(A(x))):
1/A(x) = 1 - x - x^2 - 4*x^3 - 18*x^4 - 112*x^5 - 775*x^6 - 6336*x^7 -...
RELATED SERIES.
The g.f. of A245312 begins:
G(x) = 1 + x + x^2 + 3*x^3 + 10*x^4 + 60*x^5 + 360*x^6 + 2940*x^7 +...
where A(x) = G(x*A(x)) where G(x) = A(x/G(x)) and
a(n) = [x^n] G(x)^(n+1)/(n+1) = [x^(n+2)] G(x)^(n+1)/(n+1)^3 for n>=0.
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+x*A+x^2*A^2+3*x^3*A*A'+x^4*A*A''+x*O(x^n)); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) /* From A(x) = G(x*A(x)) where G(x) is the g.f. of A245312: */
{a(n)=local(A=[1, 1]); for(i=1, n, A=concat(A, 0); m=#A-2; A[#A]=-Vec(Ser(A)^m*(1-m^2*x^2))[#A]/m);
polcoeff(1/x*serreverse(x/Ser(A)), n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A199675 A352309 A059037 * A306037 A046907 A365561
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 19 2014
STATUS
approved