login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A245316
Concatenate n-th composite integer with concatenation of its prime factors in ascending order and the sum of its prime factors.
3
4224, 6235, 82226, 9336, 10257, 122237, 14279, 15358, 1622228, 182338, 202259, 213710, 2221113, 2422239, 255510, 2621315, 273339, 2822711, 3023510, 322222210, 3331114, 3421719, 355712, 36223310, 3821921, 3931316
OFFSET
1,1
LINKS
EXAMPLE
a(2)=6235 since 6=2*3, 2+3=5 and 6 is the second composite integer.
MATHEMATICA
f[n_]:=FactorInteger[n]; con[A_]:=(v1={}; l=Length[A]; Do[v1=Join[v1, IntegerDigits[A[[k]]]], {k, l}]; FromDigits[v1]); alfa[n_]:=(b=f[n]; j=Length[b]; c=Table[Table[b[[k]][[1]], {b[[k]][[2]]}], {k, j}]; w={}; Do[w=Join[w, c[[k]]], {k, j}]; con[w]); omega[n_]:=(b=f[n]; j=Length[b]; c=Table[Table[b[[k]][[1]], {b[[k]][[2]]}], {k, j}]; w={}; Do[w=Join[w, c[[k]]], {k, j}]; Total[w]); nao[n_]:=con[{n, alfa[n], omega[n]}]; v=Select[Range[2, 1000], !PrimeQ[#]&]; Table[nao[v[[k]]], {k, 26}]
compcat[n_]:=Module[{f=Flatten[Table[#[[1]], #[[2]]]&/@FactorInteger[ n]]}, FromDigits[ Join[IntegerDigits[n], Flatten[ IntegerDigits/@ f], IntegerDigits[ Total[f]]]]]; compcat/@Select[Range[40], CompositeQ] (* Harvey P. Dale, Dec 31 2021 *)
CROSSREFS
Sequence in context: A067140 A283725 A109488 * A046335 A046383 A188789
KEYWORD
nonn,base
AUTHOR
Jahangeer Kholdi, Sep 15 2014
STATUS
approved