login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Concatenate n-th composite integer with concatenation of its prime factors in ascending order and the sum of its prime factors.
3

%I #13 Dec 31 2021 16:09:01

%S 4224,6235,82226,9336,10257,122237,14279,15358,1622228,182338,202259,

%T 213710,2221113,2422239,255510,2621315,273339,2822711,3023510,

%U 322222210,3331114,3421719,355712,36223310,3821921,3931316

%N Concatenate n-th composite integer with concatenation of its prime factors in ascending order and the sum of its prime factors.

%H Jens Kruse Andersen, <a href="/A245316/b245316.txt">Table of n, a(n) for n = 1..10000</a>

%e a(2)=6235 since 6=2*3, 2+3=5 and 6 is the second composite integer.

%t f[n_]:=FactorInteger[n];con[A_]:=(v1={};l=Length[A];Do[v1=Join[v1,IntegerDigits[A[[k]]]],{k,l}];FromDigits[v1]);alfa[n_]:=(b=f[n];j=Length[b];c=Table[Table[b[[k]][[1]],{b[[k]][[2]]}],{k,j}];w={};Do[w=Join[w,c[[k]]],{k,j}];con[w]);omega[n_]:=(b=f[n];j=Length[b];c=Table[Table[b[[k]][[1]],{b[[k]][[2]]}],{k,j}];w={};Do[w=Join[w,c[[k]]],{k,j}];Total[w]);nao[n_]:=con[{n,alfa[n],omega[n]}];v=Select[Range[2,1000],!PrimeQ[#]&];Table[nao[v[[k]]],{k,26}]

%t compcat[n_]:=Module[{f=Flatten[Table[#[[1]],#[[2]]]&/@FactorInteger[ n]]},FromDigits[ Join[IntegerDigits[n],Flatten[ IntegerDigits/@ f],IntegerDigits[ Total[f]]]]]; compcat/@Select[Range[40],CompositeQ] (* _Harvey P. Dale_, Dec 31 2021 *)

%Y Cf. A002808, A245315.

%K nonn,base

%O 1,1

%A _Jahangeer Kholdi_, Sep 15 2014