login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A245311
G.f. satisfies: A(x) = 1 + x*A(x) + x^2*A(x)^2 + x^3*A(x)*A'(x).
3
1, 1, 2, 5, 15, 50, 182, 707, 2903, 12479, 55844, 258860, 1238588, 6099054, 30836886, 159770751, 846927495, 4586883023, 25351486346, 142843162421, 819783142271, 4788268962584, 28444114318056, 171737405798836, 1053285775758916, 6558551535958516, 41441942236323008
OFFSET
0,3
LINKS
FORMULA
G.f. A(x) satisfies:
(1) A(x) = sqrt( Dx(A(x)) / (1 + x^2*Dx^2(A(x))) ), where Dx(F(x)) = d/dx x*F(x).
(2) A(x) = sqrt( (A(x) + x*A'(x)) / (1 + x^2*A(x) + 3*x^3*A'(x) + x^4*A''(x)) ).
(3) A(x) = sqrt( A'(x) / (1 + 2*x*A(x) + 4*x^2*A'(x) + x^3*A''(x)) ).
(4) A(x) = G(x*A(x)) where G(x) = A(x/G(x)) is the g.f. of A245310.
(5) [x^n] (1-n + n*A(x)) * exp(-n*x*A(x)) = 0 for n>=1. - Paul D. Hanna, Jul 30 2018
a(n) = [x^n] G(x)^(n+1)/(n+1) for n>=0 where G(x) is the g.f. of A245310.
a(n) = [x^(n+2)] G(x)^(n+1)/(n+1)^2 for n>=0 where G(x) is the g.f. of A245310.
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 15*x^4 + 50*x^5 + 182*x^6 + 707*x^7 +...
where A(x) = 1 / (1-x - x^2*A(x) - x^3*A'(x)).
Define Dx(A(x)) = d/dx x*A(x) = A(x) + x*A'(x):
Dx(A(x)) = 1 + 2*x + 6*x^2 + 20*x^3 + 75*x^4 + 300*x^5 + 1274*x^6 +...
so that Dx^2(A(x)) = d/dx x*(d/dx x*A(x)) = A(x) + 3*x*A'(x) + x^2*A''(x):
Dx^2(A(x)) = 1 + 4*x + 18*x^2 + 80*x^3 + 375*x^4 + 1800*x^5 + 8918*x^6 +...
then A(x)^2 = Dx(A(x)) / (1 + x^2*Dx^2(A(x))):
A(x)^2 = 1 + 2*x + 5*x^2 + 14*x^3 + 44*x^4 + 150*x^5 + 549*x^6 + 2128*x^7 + 8673*x^8 + 36912*x^9 + 163288*x^10 +...
RELATED SERIES.
The g.f. of A245310 begins:
G(x) = 1 + x + x^2 + x^3 + 2*x^4 + 4*x^5 + 12*x^6 + 34*x^7 + 120*x^8 +...
where A(x) = G(x*A(x)) where G(x) = A(x/G(x)) and
a(n) = [x^n] G(x)^(n+1)/(n+1) = [x^(n+2)] G(x)^(n+1)/(n+1)^2 for n>=0.
PROG
(PARI) /* From A(x) = 1 + x*A(x) + x^2*A(x)^2 + x^3*A(x)*A'(x): */
{a(n)=local(A=1+x); for(i=1, n, A = (1 + x^2*A^2 + x^3*A*A')/(1-x +x*O(x^n)));
polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) {a(n)=local(A=1+x+2*x^2+sum(k=3, n-1, a(k)*x^k) +x^2*O(x^n));
if(n<3, polcoeff(A, n), -polcoeff( sqrt( deriv(x*A) / (1 + x^2*deriv(x*deriv(x*A)) +x^2*O(x^n)) ), n)/((n-1)/2))}
for(n=0, 25, print1(a(n), ", "))
(PARI) /* From A(x) = G(x*A(x)) where G(x) is the g.f. of A245310: */
{a(n)=local(G=1+x+x^2); for(m=2, n,
G=G-x^(m+1)*(polcoeff(G^m+O(x^(m+2)), m+1)/m - polcoeff(G^m+O(x^m), m-1))+O(x^(n+3)));
polcoeff(1/x*serreverse(x/G+O(x^(n+3))), n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A346661 A060049 A107590 * A148367 A374552 A306836
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 17 2014
STATUS
approved