login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f. satisfies: A(x) = 1 + x*A(x) + x^2*A(x)^2 + x^3*A(x)*A'(x).
3

%I #16 Jul 30 2018 12:45:01

%S 1,1,2,5,15,50,182,707,2903,12479,55844,258860,1238588,6099054,

%T 30836886,159770751,846927495,4586883023,25351486346,142843162421,

%U 819783142271,4788268962584,28444114318056,171737405798836,1053285775758916,6558551535958516,41441942236323008

%N G.f. satisfies: A(x) = 1 + x*A(x) + x^2*A(x)^2 + x^3*A(x)*A'(x).

%H Paul D. Hanna, <a href="/A245311/b245311.txt">Table of n, a(n) for n = 0..500</a>

%F G.f. A(x) satisfies:

%F (1) A(x) = sqrt( Dx(A(x)) / (1 + x^2*Dx^2(A(x))) ), where Dx(F(x)) = d/dx x*F(x).

%F (2) A(x) = sqrt( (A(x) + x*A'(x)) / (1 + x^2*A(x) + 3*x^3*A'(x) + x^4*A''(x)) ).

%F (3) A(x) = sqrt( A'(x) / (1 + 2*x*A(x) + 4*x^2*A'(x) + x^3*A''(x)) ).

%F (4) A(x) = G(x*A(x)) where G(x) = A(x/G(x)) is the g.f. of A245310.

%F (5) [x^n] (1-n + n*A(x)) * exp(-n*x*A(x)) = 0 for n>=1. - _Paul D. Hanna_, Jul 30 2018

%F a(n) = [x^n] G(x)^(n+1)/(n+1) for n>=0 where G(x) is the g.f. of A245310.

%F a(n) = [x^(n+2)] G(x)^(n+1)/(n+1)^2 for n>=0 where G(x) is the g.f. of A245310.

%e G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 15*x^4 + 50*x^5 + 182*x^6 + 707*x^7 +...

%e where A(x) = 1 / (1-x - x^2*A(x) - x^3*A'(x)).

%e Define Dx(A(x)) = d/dx x*A(x) = A(x) + x*A'(x):

%e Dx(A(x)) = 1 + 2*x + 6*x^2 + 20*x^3 + 75*x^4 + 300*x^5 + 1274*x^6 +...

%e so that Dx^2(A(x)) = d/dx x*(d/dx x*A(x)) = A(x) + 3*x*A'(x) + x^2*A''(x):

%e Dx^2(A(x)) = 1 + 4*x + 18*x^2 + 80*x^3 + 375*x^4 + 1800*x^5 + 8918*x^6 +...

%e then A(x)^2 = Dx(A(x)) / (1 + x^2*Dx^2(A(x))):

%e A(x)^2 = 1 + 2*x + 5*x^2 + 14*x^3 + 44*x^4 + 150*x^5 + 549*x^6 + 2128*x^7 + 8673*x^8 + 36912*x^9 + 163288*x^10 +...

%e RELATED SERIES.

%e The g.f. of A245310 begins:

%e G(x) = 1 + x + x^2 + x^3 + 2*x^4 + 4*x^5 + 12*x^6 + 34*x^7 + 120*x^8 +...

%e where A(x) = G(x*A(x)) where G(x) = A(x/G(x)) and

%e a(n) = [x^n] G(x)^(n+1)/(n+1) = [x^(n+2)] G(x)^(n+1)/(n+1)^2 for n>=0.

%o (PARI) /* From A(x) = 1 + x*A(x) + x^2*A(x)^2 + x^3*A(x)*A'(x): */

%o {a(n)=local(A=1+x);for(i=1,n,A = (1 + x^2*A^2 + x^3*A*A')/(1-x +x*O(x^n)));

%o polcoeff(A,n)}

%o for(n=0,30,print1(a(n),", "))

%o (PARI) {a(n)=local(A=1+x+2*x^2+sum(k=3,n-1,a(k)*x^k) +x^2*O(x^n));

%o if(n<3,polcoeff(A,n),-polcoeff( sqrt( deriv(x*A) / (1 + x^2*deriv(x*deriv(x*A)) +x^2*O(x^n)) ), n)/((n-1)/2))}

%o for(n=0,25,print1(a(n),", "))

%o (PARI) /* From A(x) = G(x*A(x)) where G(x) is the g.f. of A245310: */

%o {a(n)=local(G=1+x+x^2);for(m=2,n,

%o G=G-x^(m+1)*(polcoeff(G^m+O(x^(m+2)),m+1)/m - polcoeff(G^m+O(x^m),m-1))+O(x^(n+3)));

%o polcoeff(1/x*serreverse(x/G+O(x^(n+3))),n)}

%o for(n=0,30,print1(a(n),", "))

%Y Cf. A245310, A245313.

%K nonn

%O 0,3

%A _Paul D. Hanna_, Jul 17 2014