login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A244824
Sum of all divisors of all positive integers <= 2^n.
1
1, 4, 15, 56, 220, 857, 3403, 13535, 54077, 215900, 862954, 3450545, 13802279, 55201838, 220792018, 883134861, 3532518195, 14129951284, 56519699688, 226078355122, 904312961284, 3617249936000, 14468996179294, 57875977567596, 231503907383054, 926015589350438
OFFSET
0,2
COMMENTS
Has a symmetric representation, the same as A024916.
LINKS
FORMULA
a(n) = A024916(A000079(n)).
a(n) ~ 2^(2*n-2) * Pi^2/3. - Vaclav Kotesovec, Oct 23 2023
EXAMPLE
For n = 2 the sum of all divisors of all positive integers <= 4 is [1] + [1+2] + [1+3] + [1+2+4] = 1 + 3 + 4 + 7 = 15, so a(2) = 15.
PROG
(PARI) a(n) = sum(k=1, 2^n, k*floor(2^n/k) ) \\ Jens Kruse Andersen, Jul 26 2014
(Python)
from math import isqrt
def A244824(n): return -(s:=isqrt(m:=1<<n))**2*(s+1) + sum((q:=m//k)*((k<<1)+q+1) for k in range(1, s+1))>>1 # Chai Wah Wu, Oct 23 2023
KEYWORD
nonn
AUTHOR
Omar E. Pol, Jul 06 2014
EXTENSIONS
More terms from Jens Kruse Andersen, Jul 26 2014
STATUS
approved