login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A244553
Expansion of phi(q^2) * (phi(q) - phi(q^2)) / 2 in powers of q where phi() is a Ramanujan theta function.
1
1, -1, 2, -1, 0, 2, 0, -1, 3, -4, 2, 2, 0, 0, 0, -1, 2, 1, 2, -4, 0, 2, 0, 2, 1, -4, 4, 0, 0, 0, 0, -1, 4, -2, 0, 1, 0, 2, 0, -4, 2, 0, 2, 2, 0, 0, 0, 2, 1, -5, 4, -4, 0, 4, 0, 0, 4, -4, 2, 0, 0, 0, 0, -1, 0, 4, 2, -2, 0, 0, 0, 1, 2, -4, 2, 2, 0, 0, 0, -4, 5
OFFSET
1,3
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q * f(-q, -q^7)^2 * phi(q^2) / psi(-q) = q * f(-q, -q^7)^2 * chi(q^2)^2 / chi(-q) in powers of q where phi(), psi(), f() are Ramanujan theta functions.
Euler transform of period 8 sequence [ -1, 2, 1, -2, 1, 2, -1, -2, ...].
Moebius transform is period 8 sequence [ 1, -2, 1, 0, -1, 2, -1, 0, ...].
a(2*n) = - A244554(n). a(2*n + 1) = A113411(n). a(8*n + 1) = A112603(n). a(8*n + 3) = 2 * A033761(n). a(8*n + 5) = a(8*n + 7) = 0.
EXAMPLE
G.f. = q - q^2 + 2*q^3 - q^4 + 2*q^6 - q^8 + 3*q^9 - 4*q^10 + 2*q^11 + ...
MATHEMATICA
a[ n_] := If[ n < 1, 0, Sum[ {1, -2, 1, 0, -1, 2, -1, 0}[[ Mod[ d, 8, 1] ]], {d, Divisors @ n}]];
a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q^2] (EllipticTheta[ 3, 0, q] - EllipticTheta[ 3, 0, q^2]) / 2, {q, 0, n}];
PROG
(PARI) {a(n) = if( n<1, 0, sumdiv(n, d, [0, 1, -2, 1, 0, -1, 2, -1][d%8 + 1]))};
(PARI) {a(n) = my(A, B); if( n<0, 0, A = sum(k=1, sqrtint(n), 2 * x^k^2, 1 + x * O(x^n)); B = subst(A, x, x^2); polcoeff( B * (A - B) / 2, n))};
(Sage) A = ModularForms( Gamma1(8), 1, prec=33) . basis(); A[1] - A[2];
(Magma) A := Basis( ModularForms( Gamma1(8), 1), 33); A[2] - A[3];
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Jun 30 2014
STATUS
approved