login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of phi(q^2) * (phi(q) - phi(q^2)) / 2 in powers of q where phi() is a Ramanujan theta function.
1

%I #13 Sep 08 2022 08:46:08

%S 1,-1,2,-1,0,2,0,-1,3,-4,2,2,0,0,0,-1,2,1,2,-4,0,2,0,2,1,-4,4,0,0,0,0,

%T -1,4,-2,0,1,0,2,0,-4,2,0,2,2,0,0,0,2,1,-5,4,-4,0,4,0,0,4,-4,2,0,0,0,

%U 0,-1,0,4,2,-2,0,0,0,1,2,-4,2,2,0,0,0,-4,5

%N Expansion of phi(q^2) * (phi(q) - phi(q^2)) / 2 in powers of q where phi() is a Ramanujan theta function.

%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

%H G. C. Greubel, <a href="/A244553/b244553.txt">Table of n, a(n) for n = 1..1000</a>

%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>

%F Expansion of q * f(-q, -q^7)^2 * phi(q^2) / psi(-q) = q * f(-q, -q^7)^2 * chi(q^2)^2 / chi(-q) in powers of q where phi(), psi(), f() are Ramanujan theta functions.

%F Euler transform of period 8 sequence [ -1, 2, 1, -2, 1, 2, -1, -2, ...].

%F Moebius transform is period 8 sequence [ 1, -2, 1, 0, -1, 2, -1, 0, ...].

%F a(2*n) = - A244554(n). a(2*n + 1) = A113411(n). a(8*n + 1) = A112603(n). a(8*n + 3) = 2 * A033761(n). a(8*n + 5) = a(8*n + 7) = 0.

%e G.f. = q - q^2 + 2*q^3 - q^4 + 2*q^6 - q^8 + 3*q^9 - 4*q^10 + 2*q^11 + ...

%t a[ n_] := If[ n < 1, 0, Sum[ {1, -2, 1, 0, -1, 2, -1, 0}[[ Mod[ d, 8, 1] ]], {d, Divisors @ n}]];

%t a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q^2] (EllipticTheta[ 3, 0, q] - EllipticTheta[ 3, 0, q^2]) / 2, {q, 0, n}];

%o (PARI) {a(n) = if( n<1, 0, sumdiv(n, d, [0, 1, -2, 1, 0, -1, 2, -1][d%8 + 1]))};

%o (PARI) {a(n) = my(A, B); if( n<0, 0, A = sum(k=1, sqrtint(n), 2 * x^k^2, 1 + x * O(x^n)); B = subst(A, x, x^2); polcoeff( B * (A - B) / 2, n))};

%o (Sage) A = ModularForms( Gamma1(8), 1, prec=33) . basis(); A[1] - A[2];

%o (Magma) A := Basis( ModularForms( Gamma1(8), 1), 33); A[2] - A[3];

%Y Cf. A033761, A113411, A112603, A244554.

%K sign

%O 1,3

%A _Michael Somos_, Jun 30 2014